👨⚕️ 主页: gis分享者
👨⚕️ 感谢各位大佬 点赞👍 收藏⭐ 留言📝 加关注✅!
👨⚕️ 收录于专栏:threejs gis工程师
文章目录
- 一、🍀前言
- 1.1 ☘️THREE.MeshPhongMaterial高光材质
- 1.2 normalMap 法向量贴图
- 二、🍀使用设置normalMap法向量贴图创建更加细致的凹凸和褶皱
- 1. ☘️实现思路
- 2. ☘️代码样例
一、🍀前言
本文详细介绍如何基于threejs在三维场景中使用设置normalMap法向量贴图创建更加细致的凹凸和褶皱效果,亲测可用。希望能帮助到您。一起学习,加油!加油!
1.1 ☘️THREE.MeshPhongMaterial高光材质
THREE.MeshPhongMaterial 是 Three.js 中的一种材质类型,用于模拟物体表面的光照效果,包括漫反射(diffuse)和镜面反射(specular)。这种材质遵循 Phong 反射模型,可以模拟出光滑表面的高光效果,因此非常适合用来渲染金属、塑料、瓷器等具有光泽表面的物体。
常用属性:
THREE.MeshPhongMaterial 继承自 THREE.Material,并具有一些特定的属性,可以用来控制材质的外观:
color:材质的基本颜色,默认为白色(0xffffff)。可以是一个整数,表示十六进制颜色值。
map:基础颜色贴图,可以用来替代材质的颜色。可以是一个 THREE.Texture 对象。
alphaMap:透明度贴图,可以用来定义材质的透明度。可以是一个 THREE.Texture 对象。
emissive:自发光颜色,默认为黑色(0x000000)。即使在没有光源的情况下,也会显示这个颜色。
emissiveMap:自发光贴图,可以用来定义自发光的颜色。可以是一个 THREE.Texture 对象。
specular:高光颜色,默认为白色(0x111111)。高光颜色定义了镜面反射的颜色。
shininess:高光强度,默认为 30。高光强度定义了高光区域的锐度,数值越高,高光越集中。
opacity:材质的全局透明度,默认为 1(不透明)。
transparent:是否开启透明模式,默认为 false。如果设置为 true,则需要设置 opacity 或者使用 alphaMap。
side:指定材质在哪一面渲染,可以是 THREE.FrontSide(正面)、THREE.BackSide(背面)或 THREE.DoubleSide(双面)。
wireframe:是否启用线框模式,默认为 false。
visible:是否渲染该材质,默认为 true。
depthTest:是否进行深度测试,默认为 true。
depthWrite:是否写入深度缓冲区,默认为 true。
blending:混合模式,默认为 THREE.NormalBlending。可以设置为 THREE.AdditiveBlending、THREE.SubtractiveBlending 等。
vertexColors:是否启用顶点颜色,默认为 THREE.NoColors。可以设置为 THREE.VertexBasicColors、THREE.VertexColors 或 THREE.FaceColors。
flatShading:是否使用平滑着色,默认为 false。如果设置为 true,则每个面片都将使用平均法线。
envMap:环境贴图,可以用来模拟环境光照。可以是一个 THREE.Texture 对象。
reflectivity:环境光反射率,默认为 1。
refractionRatio:折射率,默认为 0.98。
combine:环境贴图的组合方式,默认为 THREE.MixOperation。
bumpMap:凹凸贴图,可以用来模拟表面细节。可以是一个 THREE.Texture 对象。
bumpScale:凹凸贴图的比例,默认为 1。
normalMap:法线贴图,可以用来模拟表面细节。可以是一个 THREE.Texture 对象。
normalScale:法线贴图的比例,默认为 Vector2(1, 1)。
displacementMap:置换贴图,可以用来改变表面的高度。可以是一个 THREE.Texture 对象。
displacementScale:置换贴图的比例,默认为 1。
displacementBias:置换贴图的偏移,默认为 0。
1.2 normalMap 法向量贴图
概念:
normalMap 法向量贴图是一种在3D图形渲染中使用的技术,主要用于增强模型表面的细节和真实感。它通过使用一张特殊的纹理贴图来模拟物体表面的凹凸效果,从而在视觉上增加模型的细节和复杂度。
原理:
法线贴图的基本原理是将物体的法线信息存储在一张RGB纹理中。每个像素的RGB值代表该位置法线的方向,通过这种方式,可以在渲染时利用这些法线信息来模拟表面的凹凸效果。这种方法可以显著降低渲染时需要的面数和计算量,从而优化渲染效果。
与Bump Mapping(凹凸贴图)的区别:
法线贴图与Bump Mapping(凹凸贴图)是两种不同的技术,尽管它们在某些情况下可以相互替代。Bump Mapping需要计算每个像素的法线信息,而法线贴图则通过预计算的法线贴图来实现,简化了计算过程。此外,法线贴图能够提供更丰富的细节和更真实的视觉效果23。
二、🍀使用设置normalMap法向量贴图创建更加细致的凹凸和褶皱
1. ☘️实现思路
- 1、初始化renderer渲染器
- 2、初始化Scene三维场景
- 3、初始化camera相机,定义相机位置 camera.position.set。
- 4、初始化THREE.AmbientLight环境光源,scene场景加入环境光源,初始化THREE.DirectionalLight平行光源,设置平行光源位置,设置平行光源投影,scene添加平行光源,创建THREE.PointLight点光源,设置点光源位置,给点光源添加模型,scene添加点光源。
- 5、加载几何模型:创建THREE.AxesHelper坐标辅助工具,创建THREE.PlaneBufferGeometry平面几何体、THREE.GridHelper地板割线,scene场景中加入创建的平面几何体和地板割线。创建正常纹理贴图对象normal和法向量纹理贴图对象bump,根据创建的纹理创建两个THREE.MeshPhongMaterial高光材质对象material1(使用normal和bump贴图)、material2(使用normal贴图),创建立方体THREE.BoxGeometry对象geometry,根据立方体geometry和材质THREE.MeshPhongMaterial对象创建两个THREE.Mesh网格对象cube1(使用material1材质)、cube2(使用material2材质)并设置位置,scene场景中加入cube1和cube2。具体实现参考代码样例。
- 6、加入gui、controls控制,加入stats监控器,监控帧数信息。
- 7、定义render方法,执行点光源动画以及其他渲染动画,具体代码参考代码样例。
2. ☘️代码样例
<!DOCTYPE html>
<html lang="en">
<head><meta charset="UTF-8"><title>learn53(使用设置NORMALMAP法向量贴图创建更加细致的凹凸和褶皱)</title><script src="lib/threejs/127/three.js-master/build/three.js"></script><script src="lib/threejs/127/three.js-master/examples/js/controls/OrbitControls.js"></script><script src="lib/threejs/127/three.js-master/examples/js/libs/stats.min.js"></script><script src="lib/threejs/127/three.js-master/examples/js/libs/dat.gui.min.js"></script><script src="lib/js/Detector.js"></script><script src="lib/js/ImageUtils.js"></script>
</head>
<style type="text/css">html, body {margin: 0;height: 100%;}canvas {display: block;}
</style>
<body onload="draw()">
</body>
<script>var renderer, camera, scene, gui, light, stats, controls, cube1, cube2, pointLightvar angle = 0, radian, r = 5var initRender = () => {renderer = new THREE.WebGLRenderer({antialias: true})renderer.setSize(window.innerWidth, window.innerHeight)renderer.setPixelRatio(window.devicePixelRatio)renderer.setClearColor(0xeeeeee)renderer.shadowMap.enabled = truedocument.body.appendChild(renderer.domElement)}var initScene = () => {scene = new THREE.Scene()scene.backgroundColor = new THREE.Color(0xa0a0a0)scene.fog = new THREE.Fog(0xa0a0a0, 5, 50)}var initCamera = () => {camera = new THREE.PerspectiveCamera(45, window.innerWidth / window.innerHeight, 0.1, 200)camera.position.set(0, 12, 15)}var initGui = () => {gui = {normalScale: 1,animation: false,changeTexture: () => {var image = new Image()image.src = 'data/texture/normalmap/crate.gif'image.onload = (ev) => {var texture = new THREE.Texture(image)texture.needsUpdate = truecube1.material.map = texturevar normal = new THREE.Texture(THREE.ImageUtils.getNormalMap(image))normal.needsUpdate = truecube1.material.normalMap = normalcube2.material.map = texture}}}var datGui = new dat.GUI()datGui.add(gui, 'normalScale', -2, 30).onChange(e => {cube1.material.normalScale.set(e, e)cube1.material.needsUpdate = true})datGui.add(gui, 'animation')datGui.add(gui, 'changeTexture')}var initLight = () => {scene.add(new THREE.AmbientLight(0x444444))light = new THREE.DirectionalLight(0xffffff)light.position.set(0, 20, 10)light.castShadow = truescene.add(light)pointLight = new THREE.PointLight(0x00ffff)pointLight.position.set(0, 5, 0)scene.add(pointLight)// 点光源添加模型,显示位置pointLight.add(new THREE.Mesh(new THREE.SphereGeometry(0.05, 20, 20), new THREE.MeshBasicMaterial({color: 0x00ffff})))}var initModel = () => {var helper = new THREE.AxesHelper(50)scene.add(helper)// 地板var mesh = new THREE.Mesh(new THREE.PlaneBufferGeometry(200, 200), new THREE.MeshPhongMaterial({color: 0xffffff,depthWrite: false}))mesh.rotation.x = -0.5 * Math.PImesh.receiveShadow = truescene.add(mesh)// 格网var grid = new THREE.GridHelper(200, 50, 0x000000, 0x000000)grid.material.opacity = 0.2grid.material.transparent = truescene.add(grid)// 凹凸纹理var bump = new THREE.TextureLoader().load('data/texture/normalmap/plaster-normal.jpg')// 正常纹理var normal = new THREE.TextureLoader().load('data/texture/normalmap/plaster.jpg')var material1 = new THREE.MeshPhongMaterial({map: normal})material1.normalMap = bumpvar geometry = new THREE.BoxGeometry(6, 6, 6)cube1 = new THREE.Mesh(geometry, material1)cube1.position.set(-5, 5, 0)cube1.rotation.y += Math.PI / 6scene.add(cube1)var material2 = new THREE.MeshPhongMaterial({map: normal})cube2 = new THREE.Mesh(geometry, material2)cube2.position.set(5, 5, 0)cube2.rotation.y -= Math.PI / 6scene.add(cube2)}var initStats = () => {stats = new Stats()document.body.appendChild(stats.domElement)}var initControls = () => {controls = new THREE.OrbitControls(camera, renderer.domElement)controls.target.set(0, 5, 0)controls.enableDamping = true}var render = () => {if (gui.animation) {cube1.rotation.y += 0.01cube2.rotation.y -= 0.01}angle += 1radian = angle / 180 * Math.PIvar x = Math.sin(radian)var y = Math.cos(radian)if (angle % 720 > 360) {y = -y + 2}pointLight.position.z = x * rpointLight.position.x = y * r - r}var onWindowResize = () => {camera.aspect = window.innerWidth / window.innerHeightcamera.updateProjectionMatrix()renderer.setSize(window.innerWidth, window.innerHeight)}var animate = () => {render()stats.update()controls.update()renderer.render(scene, camera)requestAnimationFrame(animate)}var draw = () => {if (!Detector.webgl) Detector.addGetWebGLMessage()initGui()initRender()initScene()initCamera()initLight()initModel()initStats()initControls()animate()window.onresize = onWindowResize}
</script>
</html>
效果如下: