【机器学习】——卷积与循环的交响曲:神经网络模型在现代科技中的协奏

🎼个人主页:【Y小夜】

😎作者简介:一位双非学校的大二学生,编程爱好者,

专注于基础和实战分享,欢迎私信咨询!

🎆入门专栏:🎇【MySQL,Java基础,Rust】

🎈热门专栏:🎊【Python,Javaweb,Vue框架】

感谢您的点赞、关注、评论、收藏、是对我最大的认可和支持!❤️

学习推荐:

        人工智能是一个涉及数学、计算机科学、数据科学、机器学习、神经网络等多个领域的交叉学科,其学习曲线相对陡峭,对初学者来说可能会有一定的挑战性。幸运的是,随着互联网教育资源的丰富,现在有大量优秀的在线平台和网站提供了丰富的人工智能学习材料,包括视频教程、互动课程、实战项目等,这些资源无疑为学习者打开了一扇通往人工智能世界的大门。

        前些天发现了一个巨牛的人工智能学习网站:前言 – 人工智能教程通俗易懂,风趣幽默,忍不住分享一下给大家。

目录

🎯本文概述

🎯认识relu和tanh激活函数

💻可视化出relu和tanh函数,记住这两个函数的输出值范围

🎈代码解析

🎈运行结果

🎯掌握神经网络中的参数调节

💻创建多层感知机分类器模型

🎈代码解析

💻模型参数调节

🎈分别调整隐藏层节点数和层数并进行可视化,观察模型的变化,并输出模型评分

🎈调整激活函数为tanh函数并进行可视化,观察模型变化,并输出模型评分

🎈调整模型复杂度 调整alpha参数的值并进行可视化,观察模型变化,并输出模型评分


🎯本文概述

(一)理解神经网络算法的基本原理

(二)能够使用sklearn库进行神经网络模型的训练和预测

(三)理解激活函数的作用

(四)理解并学会调整hidden_layer_sizes、alpha、activation等参数

🎯认识relu和tanh激活函数

💻可视化出relu和tanh函数,记住这两个函数的输出值范围

🎈代码解析

import numpy as np
import matplotlib .pyplot as plt
line=np.linspace(-2,2,100)
plt.plot(line,np.maximum(line,0),label='relu',linestyle="-.")
plt.plot(line,np.tanh(line),label='tanh',linestyle="--")
plt.legend(loc='best')
plt.xlabel('x')
plt.ylabel('tanh(x) and relu(x)')
plt.show()

        这段代码使用numpy和matplotlib库绘制了ReLU和tanh函数的图像。首先生成了一个从-2到2的等差数列line,然后分别计算了ReLU和tanh函数在line上的值,并使用plt.plot()函数将它们绘制在同一张图上。最后添加了图例、坐标轴标签和标题,并使用plt.show()函数显示图像。

🎈运行结果

🎯掌握神经网络中的参数调节

💻创建多层感知机分类器模型

        利用skearn载入鸢尾花数据集,并进行训练集和测试集的划分,创建一个多层感知机MLPClassifier分类器,查看并了解该模型的各个参数,尤其是hidden_layer_sizes、alpha、activation、solver参数的作用。并对该模型进行可视化。

🎈代码解析

from sklearn.neural_network import MLPClassifier
import pandas as pd
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
iris=load_iris()
x=iris.data[:,:2]
y=iris.target
x_train,x_test,y_train,y_test=train_test_split(x,y,random_state=42)
mlp=MLPClassifier(solver='lbfgs')
mlp.fit(x_train,y_train)

        这段代码使用sklearn库中的MLPClassifier类实现了一个多层感知机分类器,用于对鸢尾花数据集进行分类。首先导入了MLPClassifier、pandas和load_iris等模块,然后加载了鸢尾花数据集,并从中提取出前两个特征作为输入x和目标y。接着将数据集划分为训练集和测试集,并创建了一个MLPClassifier对象mlp,指定了求解器为'lbfgs'。最后使用fit()方法对训练集进行拟合。


#导入画图工具
import numpy as np
import  matplotlib.pyplot  as  plt
from matplotlib.colors import ListedColormap
#以下绘图代码不要求读者掌握,暂不详细注释
cmap_light =ListedColormap(['#FFAFAA','#AAFFDA',  '#FAAAFF'])
cmap_bold =ListedColormap(['#FF0OAA','#00FFOF',  '#OFAOFF'])
x_min,x_max =x_train[:,0].min()-1,x_train[:,0].max()+1
y_min,y_max =x_train[:,1].min()-1,x_train[:,1].max()+1
xx,yy      =np.meshgrid(np.arange(x_min,x_max,.02),
np.arange(y_min,y_max,  .02))
Z=mlp.predict(np.c_[xx.ravel(),yy.ravel()])
Z =Z.reshape(xx.shape)
plt.figure()
plt.pcolormesh(xx,yy,Z,cmap=cmap_light)
#将数据特征用散点图表示出来
plt.scatter(x[:, 0],x[:,1], c=y,edgecolor='k',s=60)plt.xlim(xx.min(),xx.max())
plt.ylim(yy.min(),yy.max())
#设定图题
plt.title("MLPClassifier:solver=lbfgs")
#显示图形
plt.show()

        这段代码是用于绘制一个多层感知机(MLP)分类器的决策边界。首先导入了绘图所需的库,然后定义了两种颜色映射。接着计算数据的最小值和最大值,生成网格点,并使用MLP分类器对网格点进行预测。最后,使用散点图表示数据特征,并显示图形。

🎈运行结果

💻模型参数调节

🎈分别调整隐藏层节点数和层数并进行可视化,观察模型的变化,并输出模型评分

#隐藏层节点数为20个
mlp_20=MLPClassifier(solver='lbfgs',hidden_layer_sizes=[20])
mlp_20.fit(x_train,y_train)
Z1=mlp_20.predict(np.c_[xx.ravel(),yy.ravel()])
Z1=Z1.reshape(xx.shape)
plt.figure()
plt.pcolormesh(xx,yy,Z1,cmap=cmap_light)
#使用散点图画出x
plt.scatter(x[:,0],x[:,1],c=y,edgecolor='k',s=60)
plt.xlim(xx.min(),xx.max())
plt.ylim(yy.min(),yy.max())
#设置图题
plt.title("MLPClassifier:nodes=10")
#显示图形
plt.show()
print('MLPClassifier:nodes=20   得分: {:.2f}8'.format(mlp_20.score(x_train,y_train)*100))


#两层,隐藏层节点数为20个mlp_2L=MLPClassifier(solver='lbfgs',hidden_layer_sizes=[20,20])
mlp_2L.fit(x_train,y_train)
Z1=mlp_2L.predict(np.c_[xx.ravel(),yy.ravel()])
Z1 =Z1.reshape(xx.shape)
plt.figure()
plt.pcolormesh(xx,yy,Z1,cmap=cmap_light)
#用散点图画出x
plt.scatter(x[:,0],x[:,1],c=y,edgecolor='k',s=60)
plt.xlim(xx.min(),xx.max())
plt.ylim(yy.min(),yy.max())
#设定图题
plt.title("MLPClassifier:2layers")
#显示图形
plt.show()
print('MLPClassifier:2layers   得分: {:.2f}%'.format(mlp_2L.score(x_train,y_train)*100))

🎈调整激活函数为tanh函数并进行可视化,观察模型变化,并输出模型评分

#设置激活函数为tanh
mlp_tanh=MLPClassifier(solver='lbfgs',hidden_layer_sizes=[20,20], activation= 'tanh')
mlp_tanh.fit(x_train,y_train)
#重新画图
Z2=mlp_tanh.predict(np.c_[xx.ravel(),yy.ravel()])
Z2 =Z2.reshape(xx.shape)
plt.figure()
plt.pcolormesh(xx,yy,Z2,cmap=cmap_light)
#散点图画出x
plt.scatter(x[:, 0],x[:,1],c=y,edgecolor='k', s=60)
plt.xlim(xx.min(),xx.max())
plt.ylim(yy.min(),yy.max())
#设置图题
plt.title("MLPClassifier:2layers with tanh")
#显示图形
plt.show()
print('MLPClassifier:2layers with tanh得分:{:.2f}%'.format(mlp_tanh.score(x_train,y_train)*100))

🎈调整模型复杂度 调整alpha参数的值并进行可视化,观察模型变化,并输出模型评分

#修改模型的alpha 参数
mlp_alpha=MLPClassifier(solver='lbfgs',hidden_layer_sizes=[20,20], activation='tanh',alpha=1)
mlp_alpha.fit(x_train,y_train)
#重新绘制图形
Z3=mlp_alpha.predict(np.c_[xx.ravel(),yy.ravel()])
Z3=Z3.reshape(xx.shape)
plt.figure()
plt.pcolormesh(xx,yy,Z3,cmap=cmap_light)
#散点图画出x
plt.scatter(x[:,0],x[:,1],c=y,edgecolor='k',s=60)
plt.xlim(xx.min(),xx.max())
plt.ylim(yy.min(),yy.max())
#设定图题
plt.title("MLPClassifier:alpha=1")
#显示图形
plt.show()
print('MLPClassifier:alpha=1  得分:{:.2f}%'.format(mlp_alpha.score(x_train,y_train)*100))

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/478264.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

智慧社区管理系统平台提升物业运营效率与用户体验

内容概要 智慧社区管理系统平台是一个集成了多项功能的综合性解决方案,旨在通过先进的技术手段提升物业管理的效率和居民的生活质量。该平台不仅关注物业运营的各个方面,还强调用户体验的重要性。随着科技的发展,社区管理方式正发生着翻天覆…

使用脚本实现hadoop-yarn-flink自动化部署

本文使用脚本实现hadoop-yarn-flink的快速部署(单机部署)。 环境:①操作系统:CentOS 7.6;②CPU:x86;③用户:root。 1.前置条件 把下面的的脚本保存到“pre-install.sh”文件&#x…

【vue】vue中插槽slot的用法详解

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,…

爬虫获取的数据如何用于市场分析?

在数字化时代,数据已成为企业决策的重要资产。通过爬虫技术获取的数据可以为市场分析提供丰富的原材料。本文将探讨如何利用Python爬虫获取的数据进行市场分析,并提供代码示例。 1. 数据收集 首先,我们需要通过爬虫收集相关数据。以电商行业…

Linux高阶——1123—服务器基础服务器设备服务器基础能力

目录 1、服务器基础 1、服务器基本概述 2、服务器设计之初解决的问题 网络穿透 网络数据设备间的收发 3、服务器的类型C/S、B/S 2、服务器设备 将自己的服务器软件部署上线 3、代理服务器负载均衡,以及地址绑定方式 4、服务器的基础能力 1、服务器基础 1…

DICOM图像深入解析:为何部分DR/CR图像默认显示为反色?

概述 在数字医学影像处理中,CR(Computed Radiography,计算机放射摄影)和DR(Digital Radiography,数字放射摄影)技术广泛应用于医疗影像获取与分析。然而,临床实践中常常遇到这样一个问题:部分CR/DR图像在默认打开时呈现为反色(即负片效果),需手动反色后才能正常阅片…

公网弹性绑定负载均衡收费吗?

公网弹性绑定负载均衡收费吗?公网弹性绑定负载均衡(ELB)是收费的。费用主要包括公网IP费、带宽费和负载均衡实例费。其中,带宽费可以按固定带宽或实际使用流量计费,而实例费则根据类型、规格和使用时长来定价。此外&am…

【ArcGISPro】根据yaml构建原始Pro的conda环境

使用场景 我们不小心把原始arcgispro-py3的conda环境破坏了,我们就可以使用以下方法进行修复 查找文件 在arcgis目录下找到yaml文件 如果没找到请复制以下内容到新的yaml文件 channels: - esri - defaults dependencies: - anyio=4.2.0=py311haa95532_0 - appdirs=1.4.4=p…

多头数(head number);d_model、d_k;词嵌入维度之间的关系;多头是对不同维度的特征分开提取,意义在于将并行执行

目录 多头是对不同维度的特征分开提取,意义在于将并行执行 之后的每头提取的特征仅仅进行矩阵拼接 多头数(head number) d_model、d_k 词嵌入维度之间的关系 词嵌入的维度(d_model)决定了权重矩阵的形状 一、概念解释 二、关系举例说明 多头数,权重矩阵的长度和词…

【Google Cloud】Private Service Connect 托管式服务

简介 Private Service Connect 是什么 Private Service Connect 是 Google Cloud(原名 GCP)Virtual Private Cloud(VPC)的一项功能。 该功能主要用于以下两个场景: 使用私有 IP 访问 Google Cloud 的 API。将用户自…

【redis 】string类型详解

string类型详解 一、string类型的概念二、string类型的常用指令2.1 SET2.2 GET2.3 MSET2.4 MGET2.5 SETNX2.6 INCR2.7 INCRBY2.8 DECR2.9 DECRBY2.10 INCRBYFLOAT2.11 APPEND2.12 GETRANGE2.13 SETRANGE2.14 STRLEN 三、string类型的命令小结四、string类型的内部编码五、strin…

跨平台应用开发框架(1)----Qt(组件篇)

目录 1.Qt 1.Qt 的主要特点 2.Qt的使用场景 3.Qt的版本 2.QtSDK 1.Qt SDK 的组成部分 2.安装 Qt SDK 3.Qt SDK 的优势 3.Qt初识 1.快速上手 widget.cpp mian.cpp widget.h Helloworld.pro 2.对象树 3.坐标系 4.信号和槽 1. 信号和槽的基本概念 2. 信号和槽的…

Element UI 打包探索【2】

目录 第三个命令 第四个命令 第五个命令 第六个命令 第七个命令 cross-env BABEL_ENV babel 第八个命令 总结 书📚接上文Element UI 打包探索【1】我们继续来看 第三个命令 "lint": "eslint src/**/* test/**/* packages/**/* build/**/* …

JavaScript 中通过Array.sort() 实现多字段排序、排序稳定性、随机排序洗牌算法、优化排序性能,JS中排序算法的使用详解(附实际应用代码)

目录 JavaScript 中通过Array.sort() 实现多字段排序、排序稳定性、随机排序洗牌算法、优化排序性能,JS中排序算法的使用详解(附实际应用代码) 一、为什么要使用Array.sort() 二、Array.sort() 的使用与技巧 1、基础语法 2、返回值 3、…

丹摩 | 利用 CogVideoX 生成视频

声明:非广告,纯用户体验 1. CogVideoX CogVideoX 是智谱 AI 推出的一款极具创新性与突破性的视频生成产品。它在技术层面展现出诸多卓越特性,例如其采用的 Diffusion Transformer(DiT)架构奠定了强大的生成能力基础…

SAP开发语言ABAP常见面试问题及答案

一、基础概念问题 什么是SAP ABAP? SAP ABAP(Advanced Business Application Programming)是一种高级企业应用编程语言,用于开发SAP系统中的应用程序。它主要用于定制和扩展SAP的标准功能,以满足企业特定的业务需求。例…

C# 读取多条数据记录导出到 Word标签模板之图片输出改造

目录 应用需求 设计 范例运行环境 配置Office DCOM 实现代码 组件库引入 ​核心代码 调用示例 小结 应用需求 在我的文章《C# 读取多条数据记录导出到 Word 标签模板》里,讲述读取多条数据记录结合 WORD 标签模板输出文件的功能,原有输出图片的…

『 Linux 』网络层 - IP协议 (二)

文章目录 路由NAT技术分片与组装分片的组装IP协议分片的短板 路由 通常情况路由器具备了一个非常重要的功能,即构建子网; 同时路由器需要实现跨网络通信,说明路由器必须存在两个或以上的IP地址,通常在路由器中可以看到几个接口,分别是一个WAN口和几个LAN口; WAN口IP被称为公网I…

使用 OpenCV 进行视频中的行人检测

在计算机视觉领域,行人检测是一个重要的研究方向,它在视频监控、自动驾驶、人机交互等领域都有着广泛的应用。本文将介绍如何使用 OpenCV 库来实现视频中的行人检测。 环境准备 首先,我们需要安装 OpenCV 库。可以通过以下命令来安装&#…

javaEE初阶——多线程(1)

文章目录 一些背景知识操作系统(OS)(计算机的大管家)操作系统的基本概念:市面上常见的操作操作系统: 关于前端与后端的介绍:(针对服务的体系架构)计算机是如何工作的&…