Matlab 深度学习工具箱 案例学习与测试————求二阶微分方程

clc
clear% 定义输入变量
x = linspace(0,2,10000)';% 定义网络的层参数
inputSize = 1;
layers = [featureInputLayer(inputSize,Normalization="none")fullyConnectedLayer(10)sigmoidLayerfullyConnectedLayer(1)sigmoidLayer];
% 创建网络
net = dlnetwork(layers);% 训练轮数
numEpochs = 15;
% 每个Batch的数据个数
miniBatchSize = 100;

% SGDM优化方法设置的参数
initialLearnRate = 0.5;
learnRateDropFactor = 0.5;
learnRateDropPeriod = 5;
momentum = 0.9;
velocity = [];

% 损失函数里面考虑初始条件的系数
icCoeff = 7;% ArrayDatastore
ads = arrayDatastore(x,IterationDimension=1);
% 创建一个用于处理管理深度学习数据的对象
mbq = minibatchqueue(ads, ...MiniBatchSize=miniBatchSize, ...PartialMiniBatch="discard", ...MiniBatchFormat="BC");% 用于迭代过程监控
numObservationsTrain = numel(x);
numIterationsPerEpoch = floor(numObservationsTrain / miniBatchSize);
numIterations = numEpochs * numIterationsPerEpoch;% 创建监控对象 
% 由于计时器在您创建监控器对象时启动,因此请确保在靠近训练循环的位置创建对象。
monitor = trainingProgressMonitor( ...Metrics="LogLoss", ...Info=["Epoch" "LearnRate"], ...XLabel="Iteration");% Train the network using a custom training loop
epoch = 0;
iteration = 0;
learnRate = initialLearnRate;
start = tic;% Loop over epochs.
while epoch < numEpochs  && ~monitor.Stopepoch = epoch + 1;% Shuffle data,打乱数据.mbq.shuffle% Loop over mini-batches.while hasdata(mbq) && ~monitor.Stopiteration = iteration + 1;% Read mini-batch of data.X = next(mbq);% Evaluate the model gradients and loss using dlfeval and the modelLoss function.[loss,gradients] = dlfeval(@modelLoss, net, X, icCoeff);% Update network parameters using the SGDM optimizer.[net,velocity] = sgdmupdate(net,gradients,velocity,learnRate,momentum);% Update the training progress monitor.recordMetrics(monitor,iteration,LogLoss=log(loss));updateInfo(monitor,Epoch=epoch,LearnRate=learnRate);monitor.Progress = 100 * iteration/numIterations;end% Reduce the learning rate.if mod(epoch,learnRateDropPeriod)==0learnRate = learnRate*learnRateDropFactor;end
endxTest = linspace(0,4,1000)';yModel = minibatchpredict(net,xTest);yAnalytic = exp(-xTest.^2);figure;
plot(xTest,yAnalytic,"-")
hold on
plot(xTest,yModel,"--")
legend("Analytic","Model")

在深度学习中,被求导的对象(样本/输入)一般是多元的(向量x),绝大多数情况是标量y对向量x进行求导,很少向量y对向量x进行求导,否则就会得到复杂的微分矩阵。所以经常把一个样本看做一个整体,它包含多个变量(属性),对其所有属性求导后再加和,就得到了这个样本的偏导数之和。

% 损失函数
function [loss,gradients] = modelLoss(net, X, icCoeff)% 前向传播计算y = forward(net,X);% Evaluate the gradient of y with respect to x. % Since another derivative will be taken, set EnableHigherDerivatives to true.dy = dlgradient(sum(y,"all"),X,EnableHigherDerivatives=true);% Define ODE loss.eq = dy + 2*y.*X;% Define initial condition loss.ic = forward(net,dlarray(0,"CB")) - 1;% Specify the loss as a weighted sum of the ODE loss and the initial condition loss.loss = mean(eq.^2,"all") + icCoeff * ic.^2;% Evaluate model gradients.gradients = dlgradient(loss, net.Learnables);end

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/478512.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

51单片机-独立按键与数码管联动

独立键盘和矩阵键盘检测原理及实现 键盘的分类&#xff1a;编码键盘和非编码键盘 键盘上闭合键的识别由专用的硬件编码器实现&#xff0c;并产生键编码号或键值的称为编码键盘&#xff0c;如&#xff1a;计算机键盘。靠软件编程识别的称为非编码键盘&#xff1b;在单片机组成…

华为无线AC+AP组网实际应用小结

之前公司都是使用的H3C的交换机、防火墙以及无线AC和AP的&#xff0c;最近优化下无线网络&#xff0c;说新的设备用华为的&#xff0c;然后我是直到要部署的当天才知道用华为设备的&#xff0c;就很无语了&#xff0c;一点准备没有&#xff0c;以下为这次的实际操作记录吧&…

浅谈网络 | 传输层之TCP协议

目录 TCP 包头格式TCP 的三次握手TCP 的四次挥手TCP 的可靠性与"靠谱"的哲学TCP流量控制TCP拥塞控制 上一章我们提到&#xff0c;UDP 就像我们小时候一样简单天真&#xff0c;它相信“网之初&#xff0c;性本善&#xff0c;不丢包&#xff0c;不乱序”&#xff0c;因…

MongoDB相关问题

视频教程 【GeekHour】20分钟掌握MongoDB Complete MongoDB Tutorial by Net Ninja MongoDB开机后调用缓慢的原因及解决方法 问题分析&#xff1a; MongoDB开机后调用缓慢&#xff0c;通常是由于以下原因导致&#xff1a; 索引重建&#xff1a; MongoDB在启动时会重建索引…

嵌入式驱动开发详解3(pinctrl和gpio子系统)

文章目录 前言pinctrl子系统pin引脚配置pinctrl驱动详解 gpio子系统gpio属性配置gpio子系统驱动gpio子系统API函数与gpio子系统相关的of函数 pinctrl和gpio子系统的使用设备树配置驱动层部分用户层部分 前言 如果不用pinctrl和gpio子系统的话&#xff0c;我们开发驱动时需要先…

[模版总结] - 树的基本算法4 -最近公共祖先 LCA

什么是最近公共祖先LCA LCA&#xff1a;在一个树中&#xff0c;距离两个节点p,q最近可以是其本身并且同时包含这两个子节点的节点 题目连接 Leetcode 236 - LCA Leetcode 1644 - LCA II Leetcode 1650 - LCAIII Leetcode 1123 - LCA of Deepest leaves 基本思路 Leetcode 23…

永磁同步电机末端振动抑制(输入整形)

文章目录 1、前言2、双惯量系统3、输入整形3.1 ZV整形器3.2 ZVD整形器3.3 EI整形器 4、伺服系统位置环控制模型5、仿真5.1 快速性分析5.2 鲁棒性分析 参考 1、前言 什么是振动抑制&#xff1f;对于一个需要精确定位的系统&#xff0c;比如机械臂、塔吊、码头集装箱等&#xff…

jQuery-Word-Export 使用记录及完整修正文件下载 jquery.wordexport.js

参考资料&#xff1a; jQuery-Word-Export导出word_jquery.wordexport.js下载-CSDN博客 近期又需要自己做个 Html2Doc 的解决方案&#xff0c;因为客户又不想要 Html2pdf 的下载了&#xff0c;当初还给我费尽心思解决Html转pdf时中文输出的问题&#xff08;html转pdf文件下载之…

【Redis_Day6】Hash类型

【Redis_Day6】Hash类型 Hash类型操作hash的命令hset&#xff1a;设置hash中指定的字段&#xff08;field&#xff09;的值&#xff08;value&#xff09;hsetnx&#xff1a;想hash中添加字段并设置值hget&#xff1a;获取hash中指定字段的值hexists&#xff1a;判断hash中是否…

【CSP CCF记录】201809-2第14次认证 买菜

题目 样例输入 4 1 3 5 6 9 13 14 15 2 4 5 7 10 11 13 14 样例输出 3 思路 易错点&#xff1a;仅考虑所给样例&#xff0c;会误以为H和W两人的装车时间是一一对应的&#xff0c;那么提交结果的运行错误就会让你瞬间清醒。 本题关键是认识到H和W的装车时间不一定一一对应&…

Unity清除所有的PlayerPrefs

方法1&#xff1a; 直接在你的代码中加入这句 PlayerPrefs.DeleteAll(); 方法2&#xff1a; 点击编辑窗口的这里

非交换几何与黎曼ζ函数:数学中的一场革命性对话

非交换几何与黎曼ζ函数&#xff1a;数学中的一场革命性对话 非交换几何&#xff08;Noncommutative Geometry, NCG&#xff09;是数学的一个分支领域&#xff0c;它将经典的几何概念扩展到非交换代数的框架中。非交换代数是一种结合代数&#xff0c;其中乘积不是交换性的&…

微信小程序下拉刷新与上拉触底的全面教程

微信小程序下拉刷新与上拉触底的全面教程 引言 在微信小程序的开发中,用户体验至关重要。下拉刷新和上拉触底是提高用户交互体验的重要功能,能够让用户轻松获取最新数据和内容。本文将详细介绍这两个功能的实现方式,结合实际案例、代码示例和图片展示,帮助开发者轻松掌握…

数据库的联合查询

数据库的联合查询 简介为什么要使⽤联合查询多表联合查询时MYSQL内部是如何进⾏计算的构造练习案例数据案例&#xff1a;⼀个完整的联合查询的过程 内连接语法⽰例 外连接语法 ⽰例⾃连接应⽤场景示例表连接练习 ⼦查询语法单⾏⼦查询多⾏⼦查询多列⼦查询在from⼦句中使⽤⼦查…

论文阅读:A fast, scalable and versatile tool for analysis of single-cell omics data

Zhang, K., Zemke, N.R., Armand, E.J. et al. A fast, scalable and versatile tool for analysis of single-cell omics data. Nat Methods 21, 217–227 (2024). 论文地址&#xff1a;https://doi.org/10.1038/s41592-023-02139-9 代码地址&#xff1a;https://github.com…

Hive离线数仓结构分析

Hive离线数仓结构 首先&#xff0c;在数据源部分&#xff0c;包括源业务库、用户日志、爬虫数据和系统日志&#xff0c;这些都是数据的源头。这些数据通过Sqoop、DataX或 Flume 工具进行提取和导入操作。这些工具负责将不同来源的数据传输到基于 Hive 的离线数据仓库中。 在离线…

设计模式之 模板方法模式

模板方法模式是行为型设计模式的一种。它定义了一个算法的骨架&#xff0c;并将某些步骤的实现延迟到子类中。模板方法模式允许子类在不改变算法结构的情况下重新定义算法的某些特定步骤。 模板方法模式的核心在于&#xff1a; 封装算法的骨架&#xff1a;通过父类中的模板方…

【分治】--- 快速选择算法

Welcome to 9ilks Code World (๑•́ ₃ •̀๑) 个人主页: 9ilk (๑•́ ₃ •̀๑) 文章专栏&#xff1a; 算法Journey &#x1f3e0; 颜色划分 &#x1f4cc; 题目解析 颜色分类 本题要求我们原地对元数组划分0,1,2三个区域,也就是不能使用辅助数组&#xf…

万物皆可Docker,在NAS上一键部署最新苹果MacOS 15系统

万物皆可Docker&#xff0c;在NAS上一键部署最新苹果MacOS 15系统 哈喽小伙伴们还&#xff0c;我是Stark-C~ 最近苹果Mac mini 2024款在政府补贴的加持下&#xff0c;仅需3500块钱左右就能到手确实挺香的。我看很多评论区的小伙伴跃跃欲试&#xff0c;但是也有不少之前从未体…

C++设计模式行为模式———状态模式

文章目录 一、引言二、状态模式三、总结三、总结 一、引言 状态模式是一种行为设计模式&#xff0c; 让你能在一个对象的内部状态变化时改变其行为&#xff0c; 使其看上去就像改变了自身所属的类一样。其实现可完成类似有限状态机的功能。换句话说&#xff0c;一个对象可以处…