【机器学习】如何使用Python的Scikit-learn库实现机器学习模型,并对数据进行预处理和特征缩放以提高模型性能?

使用Python的Scikit-learn库可以方便地实现机器学习模型,并对数据进行预处理和特征缩放以提高模型性能。以下是一个典型的工作流程,包括数据加载、预处理、特征缩放、模型训练和评估:

1. 安装Scikit-learn

确保已安装Scikit-learn库:

pip install scikit-learn

2. 工作流程示例

以下代码以一个简单的分类问题为例:

导入必要的库
import numpy as np
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, classification_report
加载和准备数据
# 加载Iris数据集
data = load_iris()
X = data.data  # 特征
y = data.target  # 标签# 将数据集划分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
数据预处理
# 标准化特征
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)  # 对训练数据计算均值和标准差并进行变换
X_test = scaler.transform(X_test)       # 使用相同的均值和标准差对测试数据进行变换
构建和训练模型
# 使用随机森林分类器
model = RandomForestClassifier(random_state=42)
model.fit(X_train, y_train)  # 训练模型
评估模型
# 预测并评估
y_pred = model.predict(X_test)# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy:.2f}")# 输出分类报告
print(classification_report(y_test, y_pred, target_names=data.target_names))
输出结果
Accuracy: 1.00precision    recall  f1-score   supportsetosa       1.00      1.00      1.00        10versicolor       1.00      1.00      1.00         9virginica       1.00      1.00      1.00        11accuracy                           1.00        30macro avg       1.00      1.00      1.00        30
weighted avg       1.00      1.00      1.00        30

3. 说明和优化

  • 特征缩放:标准化(StandardScaler)将数据变换为均值为0、标准差为1,有助于某些模型(如SVM、逻辑回归)更快收敛。
  • 预处理工具
    • 缺失值填充:SimpleImputer处理数据缺失。
    • 分类变量编码:LabelEncoderOneHotEncoder
  • 模型选择
    • 根据问题类型选择模型(分类、回归、聚类)。
    • 使用GridSearchCVRandomizedSearchCV进行超参数调优。
  • 交叉验证: 使用cross_val_score评估模型的稳定性。

4. 扩展

对于更复杂的管道处理,可以使用Pipeline构建工作流,将预处理、特征缩放和模型训练串联起来:

from sklearn.pipeline import Pipelinepipeline = Pipeline([('scaler', StandardScaler()),('classifier', RandomForestClassifier(random_state=42))
])pipeline.fit(X_train, y_train)
y_pred = pipeline.predict(X_test)
print(f"Pipeline Accuracy: {accuracy_score(y_test, y_pred):.2f}")
输出结果
Pipeline Accuracy: 1.00

通过这种方式可以轻松管理和测试不同的预处理和模型配置。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/479315.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

docker如何安装redis

第一步 如果未指定redis,则安装的是最新版的 docker pull redis 创建一个目录 mkdir /usr/local/docker/redis 然后直接可以下载redis,这是方式确实不怎么好,应该找在官网上找对应的redis配置文件 wget http://download.redis.io/redis-stab…

【作业九】RNN-SRN-Seq2Seq

点击查看作业内容 目录 1 实现SRN (1)使用numpy实现 (2)在(1)的基础上,增加激活函数tanh (3)使用nn.RNNCell实现 (4)使用nn.RNN实现 2 使用R…

利用Docker容器技术部署发布web应用程序

Docker是什么? docker 是一个开源的应用容器引擎,可以帮助开发者打包应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化,容器是完全使用沙箱机制,相互之间不会有任何…

【AI学习】Mamba学习(十八):S6的硬件感知设计

上一篇Mamba的文章提到,S6 models这个名称的由来是:S4 models with a selection mechanism and computed with a scan。 所以,S6模型首先是选择机制:先前模型的一个关键限制对选择性复制和归纳等重要合成任务不够适用&#xff0c…

Bug Fix 20241122:缺少lib文件错误

今天有朋友提醒才突然发现 gitee 上传的代码存在两个很严重,同时也很低级的错误。 因为gitee的默认设置不允许二进制文件的提交, 所以PH47框架下的库文件(各逻辑层的库文件),以及Stm32Cube驱动的库文件都没上传到Gi…

实现Excel文件和其他文件导出为压缩包,并导入

导出 后端&#xff1a; PostMapping("/exportExcelData")public void exportExcelData(HttpServletRequest request, HttpServletResponse response, RequestBody ResData resData) throws IOException {List<Long> menuIds resData.getMenuIds();List<Co…

4.4 JMeter 请求参数类型详解

欢迎大家订阅【软件测试】 专栏&#xff0c;开启你的软件测试学习之旅&#xff01; 文章目录 前言1 参数&#xff08;键值对形式&#xff09;2 消息体数据&#xff08;JSON/XML 格式&#xff09;3 文件上传 前言 在使用 JMeter 进行接口测试时&#xff0c;常见的请求参数类型主…

【山大909算法题】2014-T1

文章目录 1.原题2.算法思想3.关键代码4.完整代码5.运行结果 1.原题 为带表头的单链表类Chain编写一个成员函数Reverse&#xff0c;该函数对链表进行逆序操作&#xff08;将链表中的结点按与原序相反的顺序连接&#xff09;&#xff0c;要求逆序操作就地进行&#xff0c;不分配…

Apache OFBiz xmlrpc XXE漏洞(CVE-2018-8033)

目录 1、漏洞描述 2、EXP下载地址 3、EXP利用 1、漏洞描述 Apache OFBiz是一套企业资源计划&#xff08;ERP&#xff09;系统。它提供了广泛的功能&#xff0c;包括销售、采购、库存、财务、CRM等。 Apache OFBiz还具有灵活的架构和可扩展性&#xff0c;允许用户根据业务需求…

路由传参、搜索、多选框勾选、新增/编辑表单复用

前言&#xff1a; 记录添加运动员页面功能的具体实现 ①由赛事管理页面跳转时路由传参&#xff08;携带该页面表格中莫某条数据对应的赛事id到另一个页面&#xff09;&#xff1b; ②搜索框实时搜索&#xff1b; ③多选框勾选搜索&#xff1b; ④新增表单和编辑表单复用&a…

【11-20期】Java面试进阶:深入解析核心问题与实战案例

&#x1f680; 作者 &#xff1a;“码上有前” &#x1f680; 文章简介 &#xff1a;Java &#x1f680; 欢迎小伙伴们 点赞&#x1f44d;、收藏⭐、留言&#x1f4ac; 文章题目&#xff1a;Java面试进阶&#xff1a;深入解析11-20期核心问题与实战案例 摘要&#xff1a; 本篇…

Java后端如何进行文件上传和下载 —— 本地版

简介&#xff1a; 本文详细介绍了在Java后端进行文件上传和下载的实现方法&#xff0c;包括文件上传保存到本地的完整流程、文件下载的代码实现&#xff0c;以及如何处理文件预览、下载大小限制和运行失败的问题&#xff0c;并提供了完整的代码示例。 大体思路 1、文件上传 …

基于SpringBoot的工程教育认证的计算机课程管理系统【附源码】

基于SpringBoot的工程教育认证的计算机课程管理系统 效果如下&#xff1a; 系统登录页面 教师主页面 学生管理页面 课程信息页面 通知公告页面 学生课程管理页面 学生课程信息页面 研究背景 随着信息技术的快速发展&#xff0c;计算机课程管理系统的应用在教育领域变得愈发重…

适用于学校、医院等低压用电场所的智能安全配电装置

引言 电力&#xff0c;作为一种清洁且高效的能源&#xff0c;极大地促进了现代生活的便捷与舒适。然而&#xff0c;与此同时&#xff0c;因使用不当或维护缺失等问题&#xff0c;漏电、触电事件以及电气火灾频发&#xff0c;对人们的生命安全和财产安全构成了严重威胁&#xf…

如何编写一个 Vue 3 应用:模板插值示例

Vue.js 是一个渐进式的 JavaScript 框架&#xff0c;用于构建用户界面。在本篇博客中&#xff0c;我们将通过一个简单的示例来学习如何使用 Vue 3 创建一个基本的应用。这个示例将展示如何使用 Vue 的模板插值和事件处理来构建一个简单的点击计数器。 步骤 1: 准备工作 首先&…

PostgreSQL详细安装教程

#安装PostgreSQL的yum仓库 sudo yum install -y https://download.postgresql.org/pub/repos/yum/reporpms/EL-7-x86_64/pgdg-redhat-repo-latest.noarch.rpm#安装PostgreSQL 15版本 sudo yum install -y postgresql15-server#初始化数据库&#xff08;若要自定义数据库存储目录…

uniapp中使用Mescroll实现下拉刷新与上拉加载项目实战

如何在UniApp中使用Mescroll实现下拉刷新与上拉加载 前言 下拉刷新和上拉加载更多成为了提升用户体验不可或缺的功能。UniApp作为一个跨平台的应用开发框架&#xff0c;支持使用Vue.js语法编写多端&#xff08;iOS、Android、H5等&#xff09;应用。Mescroll作为一款专为Vue设…

js:基础

js是什么 JavaScript是一种运行在客户端的编程语言&#xff0c;实现人机交互的效果 js只要有个浏览器就能跑 js可以做网页特效、表单验证、数据交互、服务端编程 服务端编程是前端人拿他们特有的后端语言node.js来干后端干的事情 js怎么组成 JavaScriptECMAScript(语言基…

Cannot find a valid baseurl for repo: centos-sclo-rh/x86_64

yum install 报错: Cannot find a valid baseurl for repo: centos-sclo-rh/x86_64 CentOS7的SCL源在2024年6月30日停止维护了。 当scl源里面默认使用了centos官方的地址&#xff0c;无法连接&#xff0c;需要替换为阿里云。 cd /etc/yum.repos.d/ 找到 CentOS-SCLo-scl.repo 和…

35 基于单片机的精确电压表DA-AD转换

目录 一、主要功能 二、硬件资源 三、程序编程 四、实现现象 一、主要功能 基于51单片机&#xff0c;采用DAC0832和ADC0832检测电压&#xff0c;0到8.5V&#xff0c;设计复位电路 LED管显示实际稳压值&#xff0c;初始电压0 二、硬件资源 基于KEIL5编写C代码&#xff0c…