【NLP高频面题 - 分布式训练】ZeRO1、ZeRO2、ZeRO3分别做了哪些优化?

【NLP高频面题 - 分布式训练】ZeRO1、ZeRO2、ZeRO3分别做了哪些优化?

重要性:★★


NLP Github 项目:

  • NLP 项目实践:fasterai/nlp-project-practice

    介绍:该仓库围绕着 NLP 任务模型的设计、训练、优化、部署和应用,分享大模型算法工程师的日常工作和实战经验

  • AI 藏经阁:https://gitee.com/fasterai/ai-e-book

    介绍:该仓库主要分享了数百本 AI 领域电子书

  • AI 算法面经:fasterai/nlp-interview-handbook#面经

    介绍:该仓库一网打尽互联网大厂NLP算法面经,算法求职必备神器

  • NLP 剑指Offer:https://gitee.com/fasterai/nlp-interview-handbook

    介绍:该仓库汇总了 NLP 算法工程师高频面题


ZeRO被分为了三个级别:

  1. ZeRO1:对优化器状态进行拆分。显存消耗减少 4 倍,通信量与数据并行相同。
  2. ZeRO2:在ZeRO1的基础上,对梯度进行拆分。显存消耗减少 8 倍,通信量与数据并行相同。
  3. ZeRO3:在ZeRO2的基础上,对模型参数进行拆分。模型占用的显存被平均分配到每个 GPU 中,显存消耗量与数据并行的并行度成线性反比关系,但通信量会有些许增加。

论文中给出了三个阶段的显存消耗分布情况:

ZeRO1

模型训练中,正向传播和反向传播并不会用到优化器状态,只有在梯度更新的时候才会使用梯度和优化器状态计算新参数。因此每个进程单独使用一段优化器状态,对各自进程的参数更新完之后,再把各个进程的模型参数合并形成完整的模型。

假设我们有 𝑁𝑑 个并行的进程,ZeRO-1 会将完整优化器的状态等分成 𝑁𝑑 份并储存在各个进程中。当反向传播完成之后,每个进程的优化器会对自己储存的优化器状态(包括Momentum、Variance 与 FP32 Master Parameters)进行计算与更新。更新过后的Partitioned FP32 Master Parameters会通过All-gather传回到各个进程中。完成一次完整的参数更新。

通过 ZeRO-1 对优化器状态的分段化储存,7.5B 参数量的模型内存占用将由原始数据并行下的 120GB 缩减到 31.4GB

ZeRO2

第二阶段中对梯度进行了拆分,在一个Layer的梯度都被计算出来后: 梯度通过All-reduce进行聚合, 聚合后的梯度只会被某一个进程用来更新参数,因此其它进程上的这段梯度不再被需要,可以立马释放掉。

通过 ZeRO-2 对梯度和优化器状态的分段化储存,7.5B 参数量的模型内存占用将由 ZeRO-1 中 31.4GB 进一步下降到 16.6GB

ZeRO3

第三阶段就是对模型参数进行分割。在ZeRO3中,模型的每一层都被切片,每个进程存储权重张量的一部分。在前向和后向传播过程中(每个进程仍然看到不同的微批次数据),不同的进程交换它们所拥有的部分(按需进行参数通信),并计算激活函数和梯度。

初始化的时候。ZeRO3将一个模型中每个子层中的参数分片放到不同进程中,训练过程中,每个进程进行正常的正向/反向传播,然后通过All-gather进行汇总,构建成完整的模型。


NLP 大模型高频面题汇总

NLP基础篇
BERT 模型面
LLMs 微调面

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/479937.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

路由引入中次优路由和路由环路问题

A公司用的是IS-IS,B公司用的是OSPF,现在这两个公司要合并,网络要相通 项目目标 前期准备 配置IP地址:完成IP地址规划,A公司和B公司内部网络通过路由器R2和R4环回接口模拟。配置路由器接口的IP地址并测试所有直连链路的…

shell脚本基础学习_总结篇(完结)

细致观看可以,访问shell脚本学习专栏,对应章节会有配图https://blog.csdn.net/2201_75446043/category_12833287.html?spm1001.2014.3001.5482 导语 一、shell脚本简介 1. 定义: 2. 主要特点: 3. shell脚本的基本结构 4. S…

光伏功率预测!Transformer-LSTM、Transformer、CNN-LSTM、LSTM、CNN五模型时序预测

目录 预测效果基本介绍程序设计参考资料 预测效果 基本介绍 Transformer-LSTM、Transformer、CNN-LSTM、LSTM、CNN五模型多变量时序光伏功率预测 (Matlab2023b 多输入单输出) 1.程序已经调试好,替换数据集后,仅运行一个main即可运行,数据格式…

Postman定义公共函数

🍅 点击文末小卡片 ,免费获取软件测试全套资料,资料在手,涨薪更快 Postman定义公共函数 在postman中,如下面的代码: 1、返回元素是否与预期值一致 var assertEqual(name,actual,expected)>{tests[…

SpringAI:Java 开发的智能新利器

一、SpringAI 简介 随着人工智能技术的飞速发展,越来越多的开发者开始探索如何将 AI 能力集成到现有的应用中来提升产品的智能化水平。Spring AI 正是为 Java 开发者提供的一款强大的 AI 框架,使得这一集成过程变得前所未有的简单和高效。 本文将深入探…

javaweb-day02-JS(javascript)

1.JavaScript引入 (1)引入方式 2.JS语法 2.1 书写语法 2.2 变量 (1)var关键字定义的是全局变量; (2)可以重复声明; 2.3 数据类型&运算符 (1)数据类型…

极狐GitLab 17.6 正式发布几十项与 DevSecOps 相关的功能【三】

GitLab 是一个全球知名的一体化 DevOps 平台,很多人都通过私有化部署 GitLab 来进行源代码托管。极狐GitLab 是 GitLab 在中国的发行版,专门为中国程序员服务。可以一键式部署极狐GitLab。 学习极狐GitLab 的相关资料: 极狐GitLab 官网极狐…

七牛云AIGC内容安全方案助力企业合规创新

随着人工智能生成内容(AIGC)技术的飞速发展,内容审核的难度也随之急剧上升。在传统审核场景中,涉及色情、政治、恐怖主义等内容的标准相对清晰明确,但在AIGC的应用场景中,这些界限变得模糊且难以界定。用户可能通过交互性引导AI生成违规内容,为审核工作带来了前所未有的不可预测…

Python语法基础(三)

🌈个人主页:羽晨同学 💫个人格言:“成为自己未来的主人~” 我们这篇文章来说一下函数的返回值和匿名函数 函数的返回值 我们先来看下面的这一段函数的定义代码 # 1、返回值的意义 def func1():print(111111111------start)num166print…

导入100道注会cpa题的方法,导入试题,自己刷题

一、问题描述 复习备考的小伙伴们,往往希望能够利用零碎的时间和手上的试题,来复习和备考 用一个能够导入自己试题的刷题工具,既能加强练习又能利用好零碎时间,是一个不错的解决方案 目前市面上刷题工具存下这些问题 1、要收费…

使用flink编写WordCount

1. env-准备环境 2. source-加载数据 3. transformation-数据处理转换 4. sink-数据输出 5. execute-执行 流程图&#xff1a; DataStream API开发 //nightlies.apache.org/flink/flink-docs-release-1.13/docs/dev/datastream/overview/ 添加依赖 <properties>&l…

【SpringBoot】28 API接口防刷(Redis + 拦截器)

Gitee仓库 https://gitee.com/Lin_DH/system 介绍 常用的 API 安全措施包括&#xff1a;防火墙、验证码、鉴权、IP限制、数据加密、限流、监控、网关等&#xff0c;以确保接口的安全性。 常见措施 1&#xff09;防火墙 防火墙是网络安全中最基本的安全设备之一&#xff0c…

java全栈day10--后端Web基础(基础知识)

引言&#xff1a;只要能通过浏览器访问的网站全是B/S架构&#xff0c;其中最常用的服务器就是Tomcat 在浏览器与服务器交互的时候采用的协议是HTTP协议 一、Tomcat服务器 1.1介绍 官网地址&#xff1a;Apache Tomcat - Welcome! 1.2基本使用(网上有安装教程&#xff0c;建议…

elasticsearch的索引模版使用方法

5 索引模版⭐️⭐️⭐️⭐️⭐️ 索引模板就是创建索引时要遵循的模板规则索引模板仅对新创建的索引有效&#xff0c;已经创建的索引并不受索引模板的影响 5.1 索引模版的基本使用 1.查看所有的索引模板 GET 10.0.0.91:9200/_index_template2.创建自定义索引模板 xixi &…

英语知识网站开发:Spring Boot框架应用

3系统分析 3.1可行性分析 通过对本英语知识应用网站实行的目的初步调查和分析&#xff0c;提出可行性方案并对其一一进行论证。我们在这里主要从技术可行性、经济可行性、操作可行性等方面进行分析。 3.1.1技术可行性 本英语知识应用网站采用SSM框架&#xff0c;JAVA作为开发语…

Linux自动化构建-make/Makefile

目录 1. 背景2. 基本使用3. 推导过程4. 好用的操作5. 拓展语法 1. 背景 会不会写makefile&#xff0c;从⼀个侧⾯说明了⼀个⼈是否具备完成⼤型⼯程的能⼒⼀个⼯程中的源⽂件不计数&#xff0c;其按类型、功能、模块分别放在若⼲个⽬录中&#xff0c;makefile定义了⼀系列的规…

Ubuntu20.04+ROS 进行机械臂抓取仿真:环境搭建(一)

目录 一、从官网上下载UR机械臂 二、给UR机械臂添加夹爪 三、报错解决 本文详细介绍如何在Ubuntu20.04ROS环境中为Universal Robots的UR机械臂添加夹爪。首先从官方和第三方源下载必要的软件包&#xff0c;包括UR机械臂驱动、夹爪插件和相关依赖。然后&#xff0c;针对gazeb…

C++11(下)

C11&#xff08;下&#xff09; 1.条件变量2.包装器&#xff08;重要&#xff09;3.bind &#x1f31f;&#x1f31f;hello&#xff0c;各位读者大大们你们好呀&#x1f31f;&#x1f31f; &#x1f680;&#x1f680;系列专栏&#xff1a;【C的学习】 &#x1f4dd;&#x1f4…

【组件封装】uniapp vue3 封装一个自定义下拉刷新组件pullRefresh,带刷新时间和加载动画教程

文章目录 前言一、实现原理二、组件样式和功能设计三、scroll-view 自定义下拉刷新使用回顾相关属性&#xff1a;最终版完整代码&#xff1a; 前言 手把手教你封装一个移动端 自定义下拉刷新组件带更新时间和加载动画&#xff08;PullRefresh&#xff09;&#xff0c;以uniapp …

14、保存与加载PyTorch训练的模型和超参数

文章目录 1. state_dict2. 模型保存3. check_point4. 详细保存5. Docker6. 机器学习常用库 1. state_dict nn.Module 类是所有神经网络构建的基类&#xff0c;即自己构建一个深度神经网络也是需要继承自nn.Module类才行&#xff0c;并且nn.Module中的state_dict包含神经网络中…