消息传递神经网络(Message Passing Neural Networks, MPNN)

消息传递神经网络(Message Passing Neural Networks, MPNN)

  • 一、引言
  • 二、消息传递框架概述
    • 1.消息传递阶段
      • (1)消息生成与传播-message
      • (2)消息聚合-aggregate
      • (3)消息更新-update
      • (4)消息传递机制小结
    • 2.读出阶段
  • 三、参考资料

一、引言

GNN中的消息传递机制是借助PyG、DGL之类的图神经网络框架来编写自己的消息传播GNN的基础,只有对其了解比较深刻,才能更好的设计自己的GNN模型。

二、消息传递框架概述

消息传递神经网络是Gilmer等人在Neural Message Passing for Quantum Chemistry中提出来的从空域角度定义GNN的范式(框架)。原文以量子化学为例,根据原子的性质(对应节点特征)和分子的结构(对应边特征)预测了13种物理化学性质。

MPNN的前向传播包括两个阶段,第一个阶段称为 message passing(消息传递)阶段,第二个阶段称为readout(读出)阶段。

1.消息传递阶段

假设 X i ( k − 1 ) ∈ R F X_i^{(k-1)} \in \R^F Xi(k1)RF表示节点i在第k-1层的特征 e j , i ∈ R D e_{j,i}\in \R^D ej,iRD表示节点j到节点i的边上的特征,则消息传递机制可以用如下公式来描述:
X i ( k ) = γ ( k ) ( X i ( k − 1 ) , ⨁ j ∈ N ( i ) ϕ ( k ) ( X i ( k − 1 ) , X j ( k − 1 ) , e j , i ) ) (1) X_i^{(k)} = \gamma^{(k)} \left(X_i^{(k-1)},\bigoplus _{j\in {\mathcal {N(i)}}} \phi^{(k)} \left( X_i^{(k-1)}, X_j^{(k-1) }, e_{j,i} \right) \right) \tag {1} Xi(k)=γ(k) Xi(k1),jN(i)ϕ(k)(Xi(k1),Xj(k1),ej,i) (1)
在消息传递机制中,主要分为三大步骤:消息生成(message)、消息聚合(aggregate)、消息更新(update)
message passing阶段会执行多次信息传递过程。

(1)消息生成与传播-message

在本阶段中,每个节点将生成自己的消息,然后向自己的邻居节点“传播”自己的消息,也就是公式(1)中的:
ϕ ( k ) ( X i ( k − 1 ) , X j ( k − 1 ) , e j , i ) \phi^{(k)} \left( X_i^{(k-1)}, X_j^{(k-1) }, e_{j,i} \right) ϕ(k)(Xi(k1),Xj(k1),ej,i)
其中, ϕ ( k ) \phi^{(k)} ϕ(k)可微函数,例如MLP。在消息生成的过程中,可能会用到:

  • 节点自己当前的特征 ( X i ( k − 1 ) ) (X_i^{(k-1)}) (Xi(k1))
  • 节点邻居当前的特征 ( X j ( k − 1 ) ) (X_j^{(k-1)}) (Xj(k1))
  • 节点自己当前的特征 ( e j , i ) (e_{j,i}) (ej,i)

当然上述三者并不都是必须的,具体使用什么来生成节点的消息取决于GNN的构建者。

(2)消息聚合-aggregate

在本阶段,每个节点会聚合来自邻居的消息,也就是公式(1)中的:

⨁ j ∈ N ( i ) ( M e s s a g e ) \bigoplus _{j\in {\mathcal {N(i)}}} \left( Message \right) jN(i)(Message)

其中Message指代消息生成与传播中每个节点的消息, N ( i ) \mathcal {N(i)} N(i)表示节点i的领域, ⨁ \bigoplus 表示可微(可导)的、置换不变(permutation invariant)函数。置换不变指聚合邻居的消息的结果与邻居的聚合顺序无关(结点的输入顺序不改变最终结果,这也是为了保证MPNN对图的同构有不变性),常见的包括sum、max、min、mean等。

(3)消息更新-update

在本阶段,每个节点利用聚合自邻居节点的消息生成自己的消息,也就是公式(1)中的:

γ ( k ) ( X i ( k − 1 ) , N e i g h b o r M s g ) \gamma^{(k)} \left(X_i^{(k-1)},NeighborMsg\right) γ(k)(Xi(k1),NeighborMsg)

其中NeighborMsg指代消息聚合中每个节点聚合自邻居的消息, γ ( k ) \gamma^{(k)} γ(k)也表示可微函数,例如MLP。

(4)消息传递机制小结

经过前面的介绍可知:空域角度定义的GNN间的不同之处便在于它们关于消息生成、消息聚合和消息更新的实现不同。
总的来说,基于消息传递图神经网络框架设计的图神经网络模型,就是通过设计不同的消息生成、消息聚合和消息更新函数实现的,从而用不同的方式聚合自身和邻居特征。

2.读出阶段

readout阶段计算基于整张图的特征向量,可以用如下公式来描述:
y ^ = R ( { X v k ∣ v ∈ G } ) (2) \hat{y} = R\left(\lbrace X_v^k | v \in G \rbrace\right) \tag{2} y^=R({XvkvG})(2)
其中, y ^ \hat{y} y^是最终的输出向量, R R R是读出函数,这个函数是可微的、满足置换不变性的。

在设计基于消息传递图神经网络框架设计图神经网络模型的时候可以根据自己的需要设计这个readout函数。

三、参考资料

  • PyG中关于MPNN的理解
  • Neural Message Passing for Quantum Chemistry

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/480833.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Linux相关】服务器无网情况配置conda

【Linux相关】 服务器无网情况配置conda 文章目录 环境配置1. 本地下载miniconda,传到服务器2. 确认安装包是否传送成功3. 确保有安装权限4. 安装5. 写路径6. 看一下是否成功 环境配置 ssh的话,服务器连不上网,无法在线下载,需要本…

鸿蒙学习使用模拟器运行应用(开发篇)

文章目录 1、系统类型和运行环境要求2、创建模拟器3、启动和关闭模拟器4、安装应用程序包和上传文件QA:在Windows电脑上启动模拟器,提示未开启Hyper-V 1、系统类型和运行环境要求 Windows 10 企业版、专业版或教育版及以上,且操作系统版本不低于10.0.18…

Android studio 签名加固后的apk文件

Android studio打包时,可以选择签名类型v1和v2,但是在经过加固后,签名就不在了,或者只有v1签名,这样是不安全的。 操作流程: 1、Android studio 对项目进行打包,生成有签名的apk文件&#xff…

【科研】9如何高效阅读和理解学术论文

【科研】9如何高效阅读和理解学术论文 写在最前面一、为什么需要系统的阅读方法?二、阅读论文的11步方法三、实践示例四、常见问题解答五、结语 🌈你好呀!我是 是Yu欸 🌌 2024每日百字篆刻时光,感谢你的陪伴与支持 ~ …

3.22【计组】 流水线加法器

实验一 timescale 1ns / 1ps/* ALU模块实现两个32bit数的add、sub、and、or、not、slt功能, 但由于Nexy7输入口限制,将num1简化为8位,在过程中再extend成32位,num2作为内部wire自行赋值,此处赋为5 由于最后的结果在to…

算法与数据结构练习——异或

知识点讲解: 一、异或操作定义: 异或是指相同为0,不同为1,也可理解为无进位相加!! 很重要!! 二、关于异或运算的几个性质: 1.0^NN (0和任何数异或都…

计算机的错误计算(一百六十九)

摘要 探讨 MATLAB 中一个不动点的计算精度问题。 不动点是一类特殊的循环迭代。它有形式 例1. 已知迭代[1] 计算 显然,每个 均为 0.5 . 下面看看 MATLAB 的计算结果。不妨不用循环语句,直接用算术表达式表示 这时计算结果在如下图片: …

11.25.2024刷华为OD

文章目录 HJ76 尼科彻斯定理(观察题,不难)HJ77 火车进站(DFS)HJ91 走格子方法,(动态规划,递归,有代表性)HJ93 数组分组(递归)语法知识…

思科实现网络地址转换(NAT)和访问控制列表(ACL)和动态路由配置并且区分静态路由和动态路由配置。

实验拓扑(分为静态路由和动态路由两种) 静态路由互通 动态路由互通 实验背景 这个是想实现外网与内网的连接跟网络的探讨,最终实现互通以及使用并且在网络地址转换后能使用网络然后再这个基础上再配置访问控制列表和网络地址转换的的学习过程。 实验需了解的知识…

Idea 2024.3 突然出现点击run 运行没有反应,且没有任何提示。

写这篇文章的目的是为了提供一个新的解决思路,因为存在同病不同原因。 如果你进行了1. 检查运行配置 (Run Configuration) 2. 清理和重建项目 3. 清除缓存并重启 IDEA 4.排除kotlin 5.重装idea等等操作之后仍然没有解决,可以试着按一下步骤进行解决。 检…

数据结构--树二叉树顺序结构存储的二叉树(堆)

前言 前面我们学习了顺序表、链表、栈和队列,这些都是线性的数据结构。今天我们要来学习一种非线性的数据结构——树。 树的概念及结构 树的概念 树是一种非线性的数据结构,是由n(n≥0)个有效结点组成的一个具有层次关系的集合…

qt QProxyStyle详解

1、概述 QProxyStyle是Qt框架中QStyle类的一个子类,它提供了一种代理机制,允许开发者在不直接修改现有样式(QStyle)实现的情况下,对样式行为进行定制或扩展。通过继承QProxyStyle,开发者可以重写其虚方法&…

STL基本算法之copy与copy_backward

copy 不论是对客端程序或对STL内部而言,copy()都是一个常常被调用的函数。由于copy进行的是复制操作,而复制操作不外乎应用assignment operator或者copy construct(copy 算法用的是前者),但是某些元素型别拥有的是trivial assignment operato…

不可分割的整体—系统思考的微妙法则

不可分割的整体——系统思考的微妙法则 作为企业领导者,我们经常需要做出决策,但有时候,我们会忽略一个事实:每个决策都不是孤立的,它背后都是一个复杂系统的一部分。 无论是市场动态、团队协作,还是产品…

云计算基础-期末复习

第一章:云计算概论 一、云计算的定义与特征 1. 定义: 云计算是一种通过网络以按需、可扩展的方式获取计算资源和服务的模式。它将计算资源视为一种公用事业,用户可以根据需求动态获取和释放资源,而无需了解底层基础设施的细节。…

基于Java的小程序电商商城开源设计源码

近年来电商模式的发展越来越成熟,基于 Java 开发的小程序电商商城开源源码,为众多开发者和企业提供了构建个性化电商平台的有力工具。 基于Java的电子商城购物平台小程序的设计在手机上运行,可以实现管理员;首页、个人中心、用户…

【机器学习】机器学习的基本分类-监督学习-逻辑回归-对数似然损失函数(Log-Likelihood Loss Function)

对数似然损失函数(Log-Likelihood Loss Function) 对数似然损失函数是机器学习和统计学中广泛使用的一种损失函数,特别是在分类问题(例如逻辑回归、神经网络)中应用最为广泛。它基于最大似然估计原理,通过…

Milvus 2.5:全文检索上线,标量过滤提速,易用性再突破!

01. 概览 我们很高兴为大家带来 Milvus 2.5 最新版本的介绍。 在 Milvus 2.5 里,最重要的一个更新是我们带来了“全新”的全文检索能力,之所以说“全新”主要是基于以下两点: 第一,对于全文检索基于的 BM25 算法,我们采…

RHCE作业五-shell脚本

一要求: 通过shell脚本分析部署nginx网络服务 1.接收用户部署的服务名称 2.判断服务是否安装 ​ 已安装;自定义网站配置路径为/www;并创建共享目录和网页文件;重启服务 ​ 没有安装;安装对应的软件包 3.测试 判断服务…

分页查询日期格式不对

方式一:在属性上加入注解,对日期进行格式化 方式二:在 WebMvcConfiguration 中扩展Spring MVC的消息转换器,统一对日期类型进行格式化处理 /*** 统一转换处理扩展spring mvc* 后端返回前端的进行统一转化处理* param converters*/Overrideprotected voi…