【机器学习】机器学习的基本分类-监督学习-逻辑回归-对数似然损失函数(Log-Likelihood Loss Function)

对数似然损失函数(Log-Likelihood Loss Function)

对数似然损失函数是机器学习和统计学中广泛使用的一种损失函数,特别是在分类问题(例如逻辑回归、神经网络)中应用最为广泛。它基于最大似然估计原理,通过最小化负对数似然(negative log-likelihood, NLL)来优化模型参数。


1. 对数似然损失的定义

对于一个分类问题,我们的目标是预测输入 x 属于类别 y∈{0,1} 的概率。假设模型输出的概率为 P(y=1|x) = \hat{y}​,则:

对数似然函数

似然函数衡量模型参数在观察到数据下的概率。假设数据集为 \{(x_i, y_i)\}_{i=1}^N​,样本 i 的预测概率为 \hat{y}_i,其似然函数为:

L(\theta) = \prod_{i=1}^N P(y_i | x_i; \theta)

对数似然函数

对数化简乘积:

\ell(\theta) = \log L(\theta) = \sum_{i=1}^N \log P(y_i | x_i; \theta)


 

2. 损失函数形式

为了简化计算,优化通常使用负对数似然损失函数(即最大化对数似然的对立面):

\mathcal{L}(\theta) = -\ell(\theta) = -\sum_{i=1}^N \log P(y_i | x_i; \theta)

二分类问题

对二分类问题,假设 P(y=1|x) = \hat{y}​,P(y=0|x) = 1 - \hat{y}​,则:

P(y|x) = \hat{y}^y (1 - \hat{y})^{1-y}

对数化并取负得到:

\mathcal{L}(\theta) = -\sum_{i=1}^N \left[ y_i \log \hat{y}_i + (1 - y_i) \log (1 - \hat{y}_i) \right]

这就是交叉熵损失函数的形式,广泛用于二分类问题。


3. 推导直观理解

1. 对数似然的意义

对数似然量化了模型预测的质量:

  • y_i = 1:我们希望预测概率 \hat{y}_i​ 越大越好。
  • y_i = 0:我们希望预测概率 1 - \hat{y}_i​ 越大越好。

通过最大化对数似然(或最小化负对数似然),模型会调整参数使其预测概率最接近真实概率。

2. 为什么对数?

  • 简化计算:对数化后,将乘积变为求和,优化更加高效。
  • 凸性:对数函数的特性使得损失函数在很多情况下是凸的,便于求解全局最优解。

4. 多分类问题

对于多分类问题(如 softmax 分类器),假设类别标签为 y∈{1,2,…,K}y,模型预测类别 j 的概率为 \hat{y}_j = P(y=j|x)

似然函数

P(y|x) = \prod_{j=1}^K \hat{y}_j^{\mathbb{1}(y=j)}

其中 {1}(y=j)是指示函数,表示样本 y 是否属于类别 j。

对数化

\ell(\theta) = \log P(y|x) = \sum_{j=1}^K \mathbb{1}(y=j) \log \hat{y}_j

负对数似然损失

对于整个数据集:

\mathcal{L}(\theta) = -\frac{1}{N} \sum_{i=1}^N \log \hat{y}_{i,y_i}

其中,\hat{y}_{i,y_i}​​ 是样本 i 对真实类别 y_i 的预测概率。


5. 代码实现

以下是二分类和多分类对数似然损失的 Python 实现:

1. 二分类损失

import numpy as npdef binary_log_likelihood_loss(y_true, y_pred):"""计算二元对数似然损失函数。参数:y_true: 真实标签数组,包含0和1,表示负类和正类。y_pred: 预测标签数组,包含0到1之间的浮点数,表示属于正类的概率。返回:返回二元对数似然损失函数的负均值。"""# 避免数值问题y_pred = np.clip(y_pred, 1e-10, 1 - 1e-10)# 计算并返回二元对数似然损失return -np.mean(y_true * np.log(y_pred) + (1 - y_true) * np.log(1 - y_pred))# 示例
y_true = np.array([1, 0, 1, 1, 0])
y_pred = np.array([0.9, 0.1, 0.8, 0.7, 0.3])
# 计算损失并输出
loss = binary_log_likelihood_loss(y_true, y_pred)
print("Binary Log-Likelihood Loss:", loss)

输出结果

Binary Log-Likelihood Loss: 0.22944289410146546

2. 多分类损失

from sklearn.metrics import log_loss# 示例数据
# 实际的类别标签
y_true = [0, 2, 1, 2]
# 预测的类别概率,每个子列表代表一个样本预测为各个类别的概率
y_pred = [[0.9, 0.05, 0.05],[0.1, 0.1, 0.8],[0.2, 0.7, 0.1],[0.05, 0.1, 0.85]
]# 使用 sklearn 计算对数似然损失
# 该函数计算的是模型预测的类别概率与实际类别标签之间的对数似然损失
# 对于多分类问题,该损失函数可以衡量模型预测概率与真实标签之间的差异程度
loss = log_loss(y_true, y_pred)
print("Multi-class Log-Likelihood Loss:", loss)

输出结果

Multi-class Log-Likelihood Loss: 0.2119244851021358

6. 对数似然损失的应用

  1. 逻辑回归
    • 二分类逻辑回归中,使用对数似然损失来拟合模型参数。
  2. 神经网络
    • 输出层通常采用 softmax 函数并结合对数似然损失,用于多分类任务。
  3. 最大熵模型
    • 最大化熵等价于最小化负对数似然。

7. 优点与缺点

优点

  • 对概率建模有理论支撑,直观解释预测置信度。
  • 能有效捕捉预测概率的质量。

缺点

  • 对异常值敏感:错误分类的高置信预测会导致损失剧增。
  • 数值问题:log⁡(0) 会引发计算错误,需引入数值稳定策略。

对数似然损失函数连接了统计学中的最大似然估计与机器学习中的损失优化,是现代监督学习模型的理论基石之一!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/480810.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Milvus 2.5:全文检索上线,标量过滤提速,易用性再突破!

01. 概览 我们很高兴为大家带来 Milvus 2.5 最新版本的介绍。 在 Milvus 2.5 里,最重要的一个更新是我们带来了“全新”的全文检索能力,之所以说“全新”主要是基于以下两点: 第一,对于全文检索基于的 BM25 算法,我们采…

RHCE作业五-shell脚本

一要求: 通过shell脚本分析部署nginx网络服务 1.接收用户部署的服务名称 2.判断服务是否安装 ​ 已安装;自定义网站配置路径为/www;并创建共享目录和网页文件;重启服务 ​ 没有安装;安装对应的软件包 3.测试 判断服务…

分页查询日期格式不对

方式一:在属性上加入注解,对日期进行格式化 方式二:在 WebMvcConfiguration 中扩展Spring MVC的消息转换器,统一对日期类型进行格式化处理 /*** 统一转换处理扩展spring mvc* 后端返回前端的进行统一转化处理* param converters*/Overrideprotected voi…

深度学习3:数据预处理使用Pandas与PyTorch的实践

文章目录 导读一、主题与提纲1.1. 读取数据集1.2. 处理缺失值1.3. 转换为张量格式 二、结论 本文是经过严格查阅相关权威文献和资料,形成的专业的可靠的内容。全文数据都有据可依,可回溯。特别申明:数据和资料已获得授权。本文内容&#xff0…

Tülu 3:重新定义开源大模型的后训练范式

一、引言 在大型语言模型(LLM)的发展历程中,预训练阶段往往受到最多关注,动辄需要数百万美元算力投入和数万亿token的训练数据。然而,一个鲜为人知但同样关键的事实是:预训练完成的模型实际上并不能直接投…

【机器学习】机器学习的基本分类-监督学习-逻辑回归(Logistic Regression)

逻辑回归是一种分类算法,尽管名字中包含“回归”,但其主要用于解决二分类和多分类问题。它通过学习一个逻辑函数,预测输入属于某个类别的概率。 1. 逻辑回归的基本概念 目标 逻辑回归的目标是找到一个函数 h(x),输出一个概率值 …

PyMOL操作手册

PyMOL 操作手册 The man will be silent, the woman will be tears. – itwangyang ​ 翻译整理:itwangyanng 2024 年 11月 29 日 目录 初识 PyMOL… 5 0.1 安装 PyMOL… 5 0.1.1 Windows 系统开源版 PyMOL 的安装… 5 0.1.2 教育版 PyMOL 的下载安装……

麒麟系统x86安装达梦数据库

一、安装准备前工作 操作系统:银河麒麟V10,CPU: x86_64 架构 下载地址,麒麟官网:https://www.kylinos.cn/ 数据库:dm8_20220915_x86_kylin10_64 下载地址,达梦数据库官网:https://…

Hot100 - 搜索二维矩阵II

Hot100 - 搜索二维矩阵II 最佳思路: 利用矩阵的特性,针对搜索操作可以从右上角或者左下角开始。通过判断当前位置的元素与目标值的关系,逐步缩小搜索范围,从而达到较高的效率。 从右上角开始:假设矩阵是升序排列的&a…

docker服务容器化

docker服务容器化 1 引言2 多个容器间网络联通2.1 单独创建关联2.2 创建时关联 3 服务搭建3.1 镜像清单3.2 容器创建 4 联合实战4.2 flink_sql之kafka到starrocks4.2 flink_sql之mysql到starrocks 5 文献借鉴 1 引言 ​ 利用docker可以很效率地搭建服务,本文在win1…

011变长子网掩码

变长子网掩码: 使用变长子网掩码(VLSM)优化地址分配 目标: 根据需求使用VLSM分配IP地址,减少浪费,并配置静态路由。 网络拓扑 创建一个包含三台路由器(R1、R2、R3)和五台PC&#x…

SpringBoot小知识(2):日志

日志是开发项目中非常重要的一个环节,它是程序员在检查程序运行的手段之一。 1.日志的基础操作 1.1 日志的作用 编程期调试代码运营期记录信息: * 记录日常运营重要信息(峰值流量、平均响应时长……) * 记录应用报错信息(错误堆栈) * 记录运维过程数据(…

大数据新视界 -- 大数据大厂之 Hive 数据安全:权限管理体系的深度解读(上)(15/ 30)

💖💖💖亲爱的朋友们,热烈欢迎你们来到 青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而 我的…

智能探针技术:实现可视、可知、可诊的主动网络运维策略

网络维护的重要性 网络运维是确保网络系统稳定、高效、安全运行的关键活动。在当今这个高度依赖信息技术的时代,网络运维的重要性不仅体现在技术层面,更关乎到企业运营的方方面面。网络运维具有保障网络的稳定性、提升网络运维性能、降低企业运营成本等…

RT-DETR融合Inner-IoU及相关改进思路

RT-DETR使用教程: RT-DETR使用教程 RT-DETR改进汇总贴:RT-DETR更新汇总贴 《Inner-IoU: More Effective Intersection over Union Loss with Auxiliary Bounding Box》 一、 模块介绍 论文链接:https://arxiv.org/abs/2311.02877 代码链接&a…

在Springboot项目中实现将文件上传至阿里云 OSS

oss介绍 阿里云对象存储服务(OSS)是一种高效、安全和成本低廉的数据存储服务,可以用来存储和管理海量的数据文件。本文将教你如何使用 Java 将文件上传到阿里云 OSS,并实现访问文件。 1. 准备工作 1.1 开通 OSS 服务 登录阿里云…

Java项目中加缓存

Java项目中加缓存 1.更新频率低;但读写频率高的数据很适合加缓存; 2.可以加缓存的地方很多:浏览器的缓存;CDN的缓存;服务器的缓存; 本地内存;分布式远端缓存; 加缓存的时候不要…

Vuex —— Day1

vuex概述 vuex是vue的状态管理工具,可以帮我们管理vue通用的数据(多组件共享的数据) vuex的应用场景: 某个状态在很多个组件中都会使用(eg.个人信息)多个组件共同维护一份数据(eg.购物车&…

【前端】Next.js 服务器端渲染(SSR)与客户端渲染(CSR)的最佳实践

关于Next.js 服务器端渲染(SSR)与客户端渲染(CSR)的实践内容方面,我们按下面几点进行阐述。 1. 原理 服务器端渲染 (SSR): 在服务器上生成完整的HTML页面,然后发送给客户端。这使得用户在首次访问时能够…

基于FPGA的FM调制(载波频率、频偏、峰值、DAC输出)-带仿真文件-上板验证正确

基于FPGA的FM调制-带仿真文件-上板验证正确 前言一、FM调制储备知识载波频率频偏峰值个人理解 二、代码分析1.模块分析2.波形分析 总结 前言 FM、AM等调制是学习FPGA信号处理一个比较好的小项目,通过学习FM调制过程熟悉信号处理的一个简单流程,进而熟悉…