大语言模型LLM的微调中 QA 转换的小工具 xlsx2json.py

在训练语言模型中,需要将文件整理成规范的文档,因为文档本身会有很多不规范的地方,为了训练的正确,将文档进行规范处理。代码的功能是读取一个 Excel 文件,将其数据转换为 JSON 格式,并将 JSON 数据写入到一个文本文件中,实现了从 Excel 数据到 JSON 数据的转换,方便在其他系统或应用中使用或传输数据。

最终要在模型里使用的还是json 格式,以input / output字典格式的输出为例 

   {
        "input": xxx,
        "output": xxx
    },
 

逐条解释代码如下:

1. 导入必要的库

import pandas as pd
import os
import json

  • import pandas as pd:导入pandas库,并使用别名pdpandas是一个用于数据处理和分析的强大库,提供了数据结构(如DataFrame)和数据操作方法,方便处理表格型数据,如 Excel 文件中的数据。
  • import os:导入os模块,用于处理文件路径相关的操作,如获取当前文件所在目录、拼接文件路径等。
  • import json:导入json模块,用于处理 JSON 数据,包括将 Python 对象转换为 JSON 格式以及将 JSON 数据解析为 Python 对象。

2. 设置工作目录并指定数据集文件路径

work_dir = os.path.dirname(os.path.abspath(__file__))
tmp_data_file = os.path.join(work_dir, "output.xlsx")

  • work_dir = os.path.dirname(os.path.abspath(__file__)):获取当前 Python 脚本文件所在的目录路径,并将其赋值给work_dir变量。os.path.dirname获取指定路径的目录部分,os.path.abspath获取绝对路径,__file__是 Python 内置变量,表示当前脚本文件的路径。
  • tmp_data_file = os.path.join(work_dir, "output.xlsx"):通过os.path.join将工作目录和文件名output.xlsx拼接成完整的 Excel 文件路径,这里假设output.xlsx在与脚本相同的目录下。如果实际情况不同,需要根据实际情况修改路径。

3. 读取 Excel 文件

df = pd.read_excel(tmp_data_file)

使用pandasread_excel函数读取指定路径(tmp_data_file)的 Excel 文件,并将其数据加载到一个DataFrame对象中。DataFramepandas库中用于处理二维表格数据的主要数据结构,类似于 Excel 中的工作表,可以方便地进行数据选择、过滤、分析等操作。

4. 将 DataFrame 转换为字典列表

data_list = df.to_dict('records')

调用DataFrame对象的to_dict方法,将DataFrame中的每一行数据转换为一个字典,然后将这些字典组成一个列表。参数'records'表示每行数据作为一个字典,字典的键是列名,值是对应列的值。这样得到的data_list是一个包含多个字典的列表,每个字典代表 Excel 文件中的一行数据。

5. 将字典列表转换为 JSON 字符串

json_data = json.dumps(data_list, ensure_ascii=False, indent=4)

使用json模块的dumps函数将data_list(字典列表)转换为 JSON 格式的字符串。ensure_ascii=False参数确保非 ASCII 字符(如中文)能够正确显示,而不是以转义字符的形式出现。indent=4参数使生成的 JSON 字符串具有缩进,格式更易读,方便查看和调试。

6. 将 JSON 数据写入文件

with open(os.path.join(work_dir, 'json_output.txt'), 'w') as f:f.write(json_data)

使用with open语句以写入模式('w')打开指定路径(os.path.join(work_dir, 'json_output.txt'))的文件。在with语句块内,将 JSON 字符串(json_data)写入到文件中。with语句会自动管理文件的打开和关闭,确保在操作完成后正确关闭文件,避免资源泄漏。

excel to json

import pandas as pd
import os
import json# 设置工作目录
work_dir = os.path.dirname(os.path.abspath(__file__))
# 处理的数据集
tmp_data_file = os.path.join(work_dir, "output.xlsx")# 读取Excel文件
df = pd.read_excel(tmp_data_file)# 将DataFrame转换为字典列表
data_list = df.to_dict('records')# 使用json.dumps函数将字典列表转换为JSON字符串,设置ensure_ascii=False
json_data = json.dumps(data_list, ensure_ascii=False, indent=4)# 将JSON数据写入文件
with open(os.path.join(work_dir, 'json_output.txt'), 'w') as f:f.write(json_data)

 

 以下是使用pandas库将 JSON 数据转换为 Excel 文件的代码示例:

import pandas as pd
import json
import os# 设置工作目录
work_dir = os.path.dirname(os.path.abspath(__file__))# JSON文件路径
json_file_path = os.path.join(work_dir, 'json_data.json')# 读取JSON文件
with open(json_file_path, 'r') as f:json_data = json.load(f)# 将JSON数据转换为DataFrame
df = pd.DataFrame(json_data)# Excel文件输出路径
excel_file_path = os.path.join(work_dir, 'output.xlsx')# 将DataFrame写入Excel文件
df.to_excel(excel_file_path, index=False)
  1. 首先设置工作目录,获取当前脚本所在的目录路径。
  2. 然后指定 JSON 文件的路径,通过open函数以只读模式打开 JSON 文件,并使用json.load函数将 JSON 数据加载为 Python 对象(通常是字典或列表)。
  3. 接着使用pandasDataFrame构造函数将 JSON 数据转换为DataFrame,这是pandas中用于处理二维表格数据的主要数据结构。
  4. 再指定输出 Excel 文件的路径。
  5. 最后使用DataFrameto_excel方法将数据写入 Excel 文件,index=False参数表示不将行索引写入 Excel 文件。

 

sample json_output.txt

[
    {
        "input": "目前什么事项会有系统邮件或者企信消息通知?",
        "output": "[此处未明确提及具体通知事项,需查看文档中的图片,假设图片显示包含合同审批通知、付款通知等]合同审批进度、付款状态等事项会有系统邮件或企信消息通知(具体需根据文档中图片所示内容确定)。"
    },
    {
        "input": "元年商旅订票时身份信息有误,如何修改?",
        "output": "行程选择界面,点击出行人“>”按钮编辑证件信息,外籍注意检查护照信息,避免证件信息有误影响乘机。"
    },
    {
        "input": "差旅费哪些发票需要员工线下打印?",
        "output": "机票中的电子客运行程单、酒店住宿专票、火车票,线上订票月结统付统一打印发票;使用护照等非身份证订票的火车票、火车退改签票据,须员工线下打印后交回;滴滴用车、餐费、洗衣费等,须员工垫付后开票。"
    },
    {
        "input": "差旅酒店住宿不通过线上预订,如何在差旅事前申请中预估费用?",
        "output": "按标准添加行程规划,如选择目的地、入住离店日期、房间数、住宿标准等,系统会自动计算预估费用上限。"
    },
    {
        "input": "跨店同事是否可以合住?",
        "output": "为节约费用,可以合住,请线下预定酒店,报销时事由特殊报备。另外,同店员工也是可以合住的,请通过元年预定酒店即可。"
    },
    {
        "input": "老系统已审批完成的差旅事前申请在哪提报销?",
        "output": "商旅模块—行程方案—迁移前差旅费报销单。"
    },
    {
        "input": "迁移前差旅费报销单据,如何添加未在事前申请中预估的费用?",
        "output": "在预算归属中点击操作下的“⊕”按钮,新增行项目添加费用。老系统事前申请的所有行项目、未在事前申请中预估报销新增的行项目均在同一费用明细行里添加。"
    },

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/481474.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Linux——实现一个简易shell】

黑暗中的我们都没有说话,你只想回家,不想你回家............................................................... 文章目录 前言 一、【shell工作过程】 二、【命令行参数】 2.1、【获取命令行参数】 1、【输出命令行提示符】 2、【输入命令行参数】 2…

理解Linux的select、poll 和 epoll:从原理到应用场景

I/O 多路复用并不是什么新东西,select 早在 1983 年就出现了,poll 在 1997 年,epoll 是 2002 年的产物。面试题总爱问“多路复用多厉害?”其实它就是把轮询的锅甩给了操作系统,而操作系统不过是用 CPU 指令帮你完成事件…

阅读方法论

选择固有缺陷,选项是对比出来的

关于函数式接口和编程的解析和案例实战

文章目录 匿名内部类“匿名”在哪里 函数式编程lambda表达式的条件Supplier使用示例 ConsumeracceptandThen使用场景 FunctionalBiFunctionalTriFunctional 匿名内部类 匿名内部类的学习和使用是实现lambda表达式和函数式编程的基础。是想一下,我们在使用接口中的方…

ChatGPT 网络安全秘籍(二)

第三章:代码分析和安全开发 这一章深入探讨软件开发的复杂过程,关注当今数字世界中的一个关键问题:确保软件系统的安全。随着技术的不断复杂和威胁的不断演变,采用融合了安全考虑的安全软件开发生命周期(SSDLC&#x…

学习笔记044——HashMap源码学习2

文章目录 1、HasMap 底层实现2、HashMap 加载顺序 1、HasMap 底层实现 JDK 1.8 HashMap 底层设计涉及到三种不同的数据结构,分别是数组、链表、红黑树。 1、基本的存储是数组,根据 key 值求出一个数组下标,将元素(key-value&am…

计算机网络常见面试题总结(上)

计算机网络基础 网络分层模型 OSI 七层模型是什么?每一层的作用是什么? OSI 七层模型 是国际标准化组织提出的一个网络分层模型,其大体结构以及每一层提供的功能如下图所示: 每一层都专注做一件事情,并且每一层都需…

用micropython 操作stm32f4单片机的定时器实现蜂鸣器驱动

import pyb import time # 初始化引脚和定时器通道作为PWM输出 # 注意:这里我们假设您使用的是支持PWM的引脚和定时器 # 在不同的MicroPython板上,支持的引脚和定时器可能不同 # 请查阅您的板的文档以确认正确的引脚和定时器 buzzer_pin pyb.Pin(PD15,…

前端框架Vue3项目实战(基于Vue3实现一个小相册)

下面是是对Vue3操作的一个项目实战 下面代码是html的基本骨架&#xff08;没有任何的功能&#xff09;&#xff1a; <!DOCTYPE html> <html lang"en"> <head> <meta charset"UTF-8"> <title>相册</title> <style&…

【英特尔IA-32架构软件开发者开发手册第3卷:系统编程指南】2001年版翻译,2-39

文件下载与邀请翻译者 学习英特尔开发手册&#xff0c;最好手里这个手册文件。原版是PDF文件。点击下方链接了解下载方法。 讲解下载英特尔开发手册的文章 翻译英特尔开发手册&#xff0c;会是一件耗时费力的工作。如果有愿意和我一起来做这件事的&#xff0c;那么&#xff…

群控系统服务端开发模式-应用开发-前端短信配置开发

一、添加视图 在根目录下src文件夹下views文件夹下param文件夹下sms文件夹下&#xff0c;新建index.vue&#xff0c;代码如下 <template><div class"app-container"><div class"filter-container" style"float:left;"><el…

极致性能:19个Vue 项目的优化手段

前言 在前端开发领域&#xff0c;Vue.js 广泛应用于各种类型的项目中。然而&#xff0c;随着项目规模的扩大和用户需求的增加&#xff0c;性能优化的重要性愈发凸显。优化不仅可以提升用户体验&#xff0c;还能显著减少资源消耗&#xff0c;提高应用的响应速度和稳定性。 本文…

基于Java Springboot个人记账之财来财往微信小程序

一、作品包含 源码数据库设计文档万字PPT全套环境和工具资源部署教程 二、项目技术 前端技术&#xff1a;Html、Css、Js、Vue、Element-ui 数据库&#xff1a;MySQL 后端技术&#xff1a;Java、Spring Boot、MyBatis 三、运行环境 开发工具&#xff1a;IDEA/eclipse 微信…

【maven-5】Maven 项目构建的生命周期:深入理解与应用

1. 生命周期是什么 ​在Maven出现之前&#xff0c;项目构建的生命周期就已经存在&#xff0c;软件开发人员每天都在对项目进行清理&#xff0c;编译&#xff0c;测试及部署。虽然大家都在不停地做构建工作&#xff0c;但公司和公司间&#xff0c;项目和项目间&#xff0c;往往…

LLamafactory API部署与使用异步方式 API 调用优化大模型推理效率

文章目录 背景介绍第三方大模型API 介绍LLamafactory 部署API大模型 API 调用工具类项目开源 背景介绍 第三方大模型API 目前&#xff0c;市面上有许多第三方大模型 API 服务提供商&#xff0c;通过 API 接口向用户提供多样化的服务。这些平台不仅能提供更多类别和类型的模型…

【Python网络爬虫笔记】6- 网络爬虫中的Requests库

一、概述 Requests 是一个用 Python 语言编写的、简洁且功能强大的 HTTP 库。它允许开发者方便地发送各种 HTTP 请求&#xff0c;如 GET、POST、PUT、DELETE 等&#xff0c;并且可以轻松地处理请求的响应。这个库在 Python 生态系统中被广泛使用&#xff0c;无论是简单的网页数…

【AI技术赋能有限元分析应用实践】Abaqus有限元分析到深度学习方法应用全过程——汽车刹车片热力耦合分析

目录 一、项目实现介绍**项目背景****项目目标****项目流程概述****技术融合****项目价值** 二、实现流程**Step 1: 分析问题构建方法&#xff0c;寻找主要分析目标&#xff0c;确定初步目标****Step 2: 使用 Abaqus 完成有限元仿真&#xff0c;后处理并保存数据为 odb 格式***…

【人工智能-科普】深度森林:传统机器学习与深度学习的创新结合

文章目录 深度森林:传统机器学习与深度学习的创新结合一、什么是深度森林?二、深度森林的工作原理1. **特征提取和转换**2. **多层级训练**3. **最终分类**三、深度森林的关键组成部分1. **森林层(Forest Layer)**2. **级联结构(Cascade Structure)**3. **特征增强(Feat…

Netty的内存池机制怎样设计的?

大家好&#xff0c;我是锋哥。今天分享关于【Netty的内存池机制怎样设计的&#xff1f;】面试题。希望对大家有帮助&#xff1b; Netty的内存池机制怎样设计的&#xff1f; 1000道 互联网大厂Java工程师 精选面试题-Java资源分享网 Netty 的内存池机制设计是为了提高性能&…

Postman设置接口关联,实现参数化

&#x1f345; 点击文末小卡片 &#xff0c;免费获取软件测试全套资料&#xff0c;资料在手&#xff0c;涨薪更快 postman设置接口关联 在实际的接口测试中&#xff0c;后一个接口经常需要用到前一个接口返回的结果&#xff0c; 从而让后一个接口能正常执行&#xff0c;这…