三维渲染中顺序无关的半透明混合(OIT)(一Depth Peeling)

>本文收集关于透明对象渲染技术中关于OIT技术的资料,尝试用简单的逻辑对这些内容进行整理。

1、透明对象的特殊对待

不要小瞧png图片和jpg图片的差异!在一般的三维平台,png代表的是带透明通道的纹理,而jpg代表的是不带透明的纹理。透明纹理和不透明纹理虽然都能被渲染出来,但是它们在三维模型组织、三维渲染等方面分家的。不透明对象由于只需要判断是离屏幕最近即可判断可见,而不透明对象可能需要先进行空间排序,还需要考虑与别的物体的混合模式(Blend)。因此他们需采用不同的渲染批次(DrawCall)。一旦渲染批次多了,那么渲染效率就会降低。

2、WebGPU在透明对象的瓶颈

一般而言,我们无法通过仅通过对象前后排序(犹如PS中的图层排序)从而做到让模型的透明计算正常。在WorldWind平台原来也是才基于物体排序技术,但只能解决50%的问题。在那里经常遇到从透明窗户看外面的时候,外面模型看不到的情况。在2019年,Arcgis4.X的三维平台也会出现这种情况。

如果显存足够,其实我们非常暴力的把每个像素点都存储所对应的三维点。但这种技术是很难通用的,某个像素可能对应几十个甚至上百个三维投影点,不可能先存储再排序在计算的。

下面这个代码记为公式1:

下面是对N个投影点按距离排序,最后计算颜色的过程,非常粗暴
其中0是最远的点,N是最近的单
color0=p0*a0+backgroundColor*(1-a0);
color1=p1*a1+color0*(1-a1);
....
colorN=pN*an+colorNs1*(1-an)

3、Depth Peeling算法

^_^不要怕,这个算法很好理解。

还是前面的公公式,可见p1的颜色是最重要的颜色,把握了p1,就等于把握了半壁江山。Depth Peeling算法就是先从最重要的p1开始。已知p1是深度值最浅的一个像素,可以采用第一次Pass(渲染过程,类似把画板全刷一次)。接下来第二次Pass找到p2点,以此类推,可以设置最多寻找几层。

下面这张图就是用了4个Pass,按距离寻找的三角面。可见这种做法解决的前面几层三角面的情况,可以实现计算量少,对性能要求低的情况。

另外由于公式1是从后往前,而本算法是从往后,因此在计算颜色的算法上需要调整。对公式1进行调整可得到如下规律 

c0=p0*a0+b*(1-a0)
c1=p1*a1+c0*(1-a1)=p1*a1+p0*(1-a1)*a0+b*(1-a0)*(1-a1)
c2=p2*a2+c1*(1-a2)=p2*a2+p1*a1*(1-a2)+p0*a0*(1-a1)*(1-a2)+b*(1-a0)*(1-a1)*(1-a2)
c3=p3*a3+c2*(1-a3)=p3*a3+p2*a2*(1-a3)+p1*a1*(1-a2)*(1-a3)+p0*a0*(1-a1)*(1-a2)*(1-a3)+b*(1-a0)*(1-a1)*(1-a2)*(1-a3)
c3=p4*a4+c3*(1-a4)=p4*a4+p3*a3*(1-a4)+p2*a2*(1-a3)*(1-a4)+p1*a1*(1-a2)*(1-a3)*(1-a4)+p0*a0*(1-a1)*(1-a2)*(1-a3)*(1-a4)+b*(1-a0)*(1-a1)*(1-a2)*(1-a3)*(1-a4)
cn=pn*an+E(pi*ai*π(1-aj))....E表示累加,π表示累乘。
---------------------------------------------------
+p4*a4               			=p4*a4*m        其中m=1
+p3*a3*(1-a4)   			=p3*a3*m	其中m=m*(1-a4)
+p2*a2*(1-a3)*(1-a4)		       =p2*a2*m	其中m=m*(1-a3)
+p1*a1*(1-a2)*(1-a3)*(1-a4)		=p1*a1*m	其中m=m*(1-a2)

可见在整个过程中仅需记录m即可实现从前往后的计算,这是一个非常大的计算效率提升策略!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/481656.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

行业分析---2024年蔚来汽车三季度财报及科技日

1 前言 在之前的博客中,笔者撰写了多篇行业类分析的文章(科技新能源): 《行业分析---我眼中的Apple Inc.》 《行业分析---马斯克的Tesla》 《行业分析---造车新势力之蔚来汽车》 《行业分析---造车新势力之小鹏汽车》 《行业分析-…

mac上的建议xftp 工具

mac上的建议xftp 工具 最近使用mac比较频繁了,但是第一次重度使用mac里面有很多的工具都是新的,有的window版本的工具无法使用。 xftp 的平替 Cyberduck 从它的官网上下载是免费的,但是如果使用 Apple store 要花费198呢。这不就剩下一大笔…

C++ - 二叉搜索树讲解

二叉搜索树概念和定义 二叉搜索树是一个二叉树,其中每个节点的值都满足以下条件: 节点的左子树只包含小于当前节点值的节点。节点的右子树只包含大于当前节点值的节点。左右子树也必须是二叉搜索树。 二叉树搜索树性质 从上面的二叉搜索树定义中可以了…

【WRF后处理】WRF模拟效果评价及可视化:MB、RMSE、IOA、R

【WRF后处理】模拟效果评价及可视化 准备工作模型评价指标Python实现代码Python处理代码:导入站点及WRF模拟结果可视化图形及评价指标参考在气象和环境建模中(如使用 WRF 模型进行模拟),模型性能评价指标是用于定量评估模拟值与观测值之间偏差和拟合程度的重要工具。 本博客…

对拍详细使用方法

对拍的作用 对于我们在学校OJ,cf,牛客…各种只提供少量测试数据的题目,常常交上代码常常超时,能写出正确的暴力代码而题目要求的时间复杂度更低。然而这时你写出了能通过样例且时间复杂度更低的代码,但交上去就是错误…

D84【python 接口自动化学习】- pytest基础用法

day84 pytest常用断言类型 学习日期&#xff1a;20241130 学习目标&#xff1a;pytest基础用法 -- pytest常用断言类型 学习笔记&#xff1a; 常用断言类型 代码实践 def test_assert():assert 11assert 1!2assert 1<2assert 2>1assert 1>1assert 1<1assert a…

解析生成对抗网络(GAN):原理与应用

目录 一、引言 二、生成对抗网络原理 &#xff08;一&#xff09;基本架构 &#xff08;二&#xff09;训练过程 三、生成对抗网络的应用 &#xff08;一&#xff09;图像生成 无条件图像生成&#xff1a; &#xff08;二&#xff09;数据增强 &#xff08;三&#xff…

学习视频超分辨率扩散模型中的空间适应和时间相干性(原文翻译)

文章目录 摘要1. Introduction2. Related Work3. Our Approach3.1. Video Upscaler3.2. Spatial Feature Adaptation Module3.3. Temporal Feature Alignment Module3.4. Video Refiner3.5. Training Strategy 4. Experiments4.1. Experimental Settings4.2. Comparisons with …

全面解读权限控制与RBAC模型在若依中的实现

目录 前言1 权限控制基础概念1.1 权限控制的核心要素1.2 常见权限控制模型 2 RBAC模型详解2.1 RBAC的基本原理2.2 RBAC的优点2.3 RBAC的扩展模型 3 若依框架中的权限管理3.1 菜单管理3.2 角色管理3.3 用户管理 4 若依权限管理的实现流程4.1 创建菜单4.2 创建角色并分配权限4.3 …

Mybatis:CRUD数据操作之单个条件(动态SQL)

Mybatis基础环境准备请看&#xff1a;Mybatis基础环境准备 本篇讲解Mybati数据CRUD数据操作之单个条件&#xff08;动态SQL&#xff09; 如上图所示&#xff0c;用户在查询时只能选择 品牌名称、当前状态、企业名称 这三个条件中的一个&#xff0c;但是用户到底选择哪儿一个&am…

2023信息安全管理与评估-linux应急响应-1

靶机的环境&#xff1a;Linux webserver 5.4.0-109-generic 1.提交攻击者的 ip地址 linux应急响应需要知道黑客想要进入服务器或者内网&#xff0c;一定从web入手 所以应急响应的i第一步应该就是看一下web日志&#xff0c;看进行了神码操作 apache的网站日志是/var/log/apac…

【Springboot】@Autowired和@Resource的区别

【Springboot】Autowired和Resource的区别 【一】定义【1】Autowired【2】Resource 【二】区别【1】包含的属性不同【2】Autowired默认按byType自动装配&#xff0c;而Resource默认byName自动装配【3】注解应用的地方不同【4】出处不同【5】装配顺序不用&#xff08;1&#xff…

服务器遭受DDoS攻击后如何恢复运行?

当服务器遭受 DDoS&#xff08;分布式拒绝服务&#xff09;攻击 后&#xff0c;恢复运行需要快速采取应急措施来缓解攻击影响&#xff0c;并在恢复后加强防护以减少未来攻击的风险。以下是详细的分步指南&#xff1a; 一、应急处理步骤 1. 确认服务器是否正在遭受 DDoS 攻击 …

Linux命令系列-常见查看系统资源命令

Linux命令系列-常见查看命令 进程管理内存管理磁盘空间管理网络管理主机系统 摘要&#xff1a;本文将对linux系统上常见的查看系统各种资源的命令进行介绍&#xff0c;包括du&#xff0c;df&#xff0c;netstat等命令。所有这些命令都有相关实验截图&#xff0c;实验平台为ubun…

1-1 Gerrit实用指南

注&#xff1a;学习gerrit需要拥有git相关知识&#xff0c;如果没有学习过git请先回顾git相关知识点 黑马程序员git教程 一小时学会git git参考博客 git 实操博客 1.0 定义 Gerrit 是一个基于 Web 的代码审查系统&#xff0c;它使用 Git 作为底层版本控制系统。Gerrit 的主要功…

Node.js:开发和生产之间的区别

Node.js 中的开发和生产没有区别&#xff0c;即&#xff0c;你无需应用任何特定设置即可使 Node.js 在生产配置中工作。但是&#xff0c;npm 注册表中的一些库会识别使用 NODE_ENV 变量并将其默认为 development 设置。始终在设置了 NODE_ENVproduction 的情况下运行 Node.js。…

【Linux】【字符设备驱动】深入解析

Linux字符设备驱动程序用于控制不支持随机访问的硬件设备&#xff0c;如串行端口、打印机、调制解调器等。这类设备通常以字符流的形式与用户空间程序进行交互。本节将深入探讨字符设备驱动的设计原理、实现细节及其与内核其他组件的交互。 1. 引言 字符设备驱动程序是Linux内…

计算机毕业设计Python异常流量检测 流量分类 流量分析 网络流量分析与可视化系统 网络安全 信息安全 机器学习 深度学习

温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 作者简介&#xff1a;Java领…

排序算法之选择排序堆排序

算法时间复杂度辅助空间复杂度稳定性选择排序O(N^2)O(1)不稳定堆排序O(NlogN)O(1)不稳定 1.选择排序 这应该算是最简单的排序算法了&#xff0c;每次在右边无序区里选最小值&#xff0c;没有无序区时&#xff0c;就宣告排序完毕 比如有一个数组&#xff1a;[2,3,2,6,5,1,4]排…

搜索二维矩阵 II(java)

题目描述 编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target 。该矩阵具有以下特性&#xff1a; 每行的元素从左到右升序排列。每列的元素从上到下升序排列。 代码思路&#xff1a; 用暴力算法&#xff1a; class Solution {public boolean searchMatrix(…