基于BM1684的AI边缘服务器-模型转换,大模型一体机(二)

目标追踪

注:所有模型转换都是在docker环境中的

先进入docker

这里我们是要在docker环境里编译的,所以先进入docker

:~/tpu-nntc# docker run -v $PWD/:/workspace  -it sophgo/tpuc_dev:latest

初始化环境

root@2bb02a2e27d5:/workspace/tpu-nntc# source ./scripts/envsetup.sh

docker里安装编译器

root@2bb02a2e27d5:/workspace/sophon-demo/sample/YOLOv5/cpp/yolov5_bmcv/build# sudo apt-get install  gcc-aarch64-linux-gnu g++-aarch64-linux-gnu libeigen3-dev

本C++例程依赖Eigen,您需要在编译c++程序的机器上运行如下命令安装:

sudo apt install libeigen3-dev

先下载相关文件,主要是追踪的测试视频,测试图片,目标追踪的权重,目标检测的权重

# 安装unzip,若已安装请跳过
sudo apt install unzip
chmod -R +x scripts/
./scripts/download.sh

然后编译c++代码

/workspace/sophon-demo/sample/DeepSORT/cpp/deepsort_bmcv/build# 
cd cpp/deepsort_bmcv
mkdir build && cd build
# 请根据实际情况修改-DSDK的路径,需使用绝对路径。
cmake -DTARGET_ARCH=soc -DSDK=/workspace/soc-sdk ..  
make

这时会生成deepsort_bmcv.soc文件,复制到盒子里

:/workspace/sophon-demo/sample/DeepSORT/cpp/deepsort_bmcv# scp -r  deepsort_bmcv.soc linaro@192.168.17.125:/data/yolo/sophon-demo/sample/DeepSORT/cpp

测试视频

./deepsort_bmcv.soc --input=rtsp://admin:sangfor@123@192.168.17.253 --bmodel_detector=../../BM1684/yolov5s_v6.1_3output_int8_1b.bmodel --bmodel_extractor=../../BM1684/extractor_fp32_1b.bmodel --dev_id=0

运行相关代码,这个是检测图片的

cd python
python3 deepsort_opencv.py --input ../datasets/mot15_trainset/ADL-Rundle-6/img1 --bmodel_detector ../models/BM1684/yolov5s_v6.1_3output_int8_1b.bmodel --bmodel_extractor ../models/BM1684/extractor_fp32_1b.bmodel --dev_id=0

对视频追踪

python3 deepsort_opencv.py --input ../datasets/test_car_person_1080P.mp4 --bmodel_detector ../models/BM1684/yolov5s_v6.1_3output_int8_1b.bmodel --bmodel_extractor ../models/BM1684/extractor_fp32_1b.bmodel --dev_id=0

对本地摄像头视频追踪

python3 deepsort_opencv.py --input rtsp://admin:sangfor@123@192.168.17.253 --bmodel_detector ../models/BM1684/yolov5s_v6.1_3output_int8_1b.bmodel --bmodel_extractor ../models/BM1684/extractor_fp32_1b.bmodel --dev_id=0

人体姿态估计

python3 python/openpose_opencv.py --input rtsp://admin:sangfor@123@192.168.17.253 --bmodel models/BM1684/pose_coco_fp32_1b.bmodel --dev_id 0

生成的文件会放在sample/YOLOv5/data/models/BM1684/int8model/anquanmao_batch1

:~/fugui/sophon-demo_20221027_181652/sophon-demo_v0.1.0_b909566_20221027/sample/YOLOv5/data/models/BM1684/int8model/anquanmao_batch1# ls
compilation.bmodel  input_ref_data.dat  io_info.dat  output_ref_data.dat

然后将转换好的模型推送到开发板

scp compilation.bmodel linaro@{开发板ip地址}:/data/{你的yolov5存放路径}

开发板环境配置

搭建 libsophon 环境

cd libsophon_<date>_<hash>
# 安装依赖库,只需要执行一次
sudo apt install dkms libncurses5
sudo dpkg -i sophon-*.deb
# 在终端执行如下命令,或者log out再log in当前用户后即可使用bm-smi等命令
source /etc/profile

python3 yolov5_new_1.py --input rtsp://admin:1111111a@192.168.16.223 --bmodel yolov5s_v6.1_3output_fp32_1b.bmodel

c++编译环境

安装libsophon

进入sophon-img_20221027_215835这个路径

解压里面的tar包

:~/fugui/sophon-img_20221027_215835# tar -zxvf libsophon_soc_0.4.2_aarch64.tar.gz

将相关库目录和头文件目录拷贝到soc-sdk文件夹中

:~/fugui/sophon-img_20221027_215835/libsophon_soc_0.4.2_aarch64/opt/sophon/libsophon-0.4.2# sudo cp -rf include lib ~/fugui/soc-sdk
安装sophon-opencv 和sophon-ffmpeg

先进入sophon-mw,解压sophon-mw-soc_0.4.0_aarch64.tar.gz这个tar包

:~/fugui/sophon-mw_20221027_183429# tar -zxvf sophon-mw-soc_0.4.0_aarch64.tar.gz

复制相关文件到soc-sdk

:~/fugui/sophon-mw_20221027_183429/sophon-mw-soc_0.4.0_aarch64/opt/sophon# cp -rf sophon-ffmpeg_0.4.0//lib sophon-ffmpeg_0.4.0/include/ ~/fugui/soc-sdk:~/fugui/sophon-mw_20221027_183429/sophon-mw-soc_0.4.0_aarch64/opt/sophon# cp -rf sophon-opencv_0.4.0//lib sophon-opencv_0.4.0/include/ ~/fugui/soc-sdk

很简单,复制过去,交叉编译的环境就搭建好了

TPU-NNTC环境

这里我们是要在docker环境里编译的,所以先进入docker

:~/fugui# docker run -v $PWD/:/workspace  -it sophgo/tpuc_dev:latest

然后进入tpu-nntc,初始化环境

root@2bb02a2e27d5:/workspace/tpu-nntc# source ./scripts/envsetup.sh

docker里安装编译器

root@2bb02a2e27d5:/workspace/sophon-demo/sample/YOLOv5/cpp/yolov5_bmcv/build# sudo apt-get install gcc-aarch64-linux-gnu g++-aarch64-linux-gnu

进入sophon-demo路径

下载相关文件

:~/fugui/sophon-demo/sample/YOLOv5# chmod -R +x scripts/
:~/fugui/sophon-demo/sample/YOLOv5# ./scripts/download.sh

编译yolov5

我们这里只是交叉编译,不能在x86设备上运行,要复制到我们1684平台

先cmake

root@2bb02a2e27d5:/workspace/sophon-demo/sample/YOLOv5/cpp/yolov5_bmcv/build# cmake -DTARGET_ARCH=soc -DSDK=/workspace/soc-sdk ..

在make

root@2bb02a2e27d5:/workspace/sophon-demo/sample/YOLOv5/cpp/yolov5_bmcv/build# make

此时会出现.soc文件

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-eWPar5Yp-1692844732110)(https://gitee.com/lizheng0219/picgo_img/raw/master/img202325/image-20230421134631891.png)]

把输出的文件传导我们开发板上运行下

scp -r yolov5_bmcv linaro@192.168.17.125:/data/sophon-demo/sample/YOLOv5/cpp/

运行推理图片

./yolov5_bmcv.soc --input=../../coco128 --bmodel=../../python/yolov5s_v6.1_3output_fp32_1b.bmodel --dev_id=0 --conf_thresh=0.5 --nms_thresh=0.5 --classnames=../../coco.names 

推理视频

./yolov5_bmcv.soc --input=../../test.avi --bmodel=../../python/yolov5s_v6.1_3output_fp32_1b.bmodel --dev_id=0 --conf_thresh=0.5 --nms_thresh=0.5 --classnames=../../coco.names 

c++推理网络摄像头

./yolov5_bmcv.soc --input=rtsp://admin:sangfor@123@192.168.17.253 --bmodel=/data/ai_box/yolov5s_640_coco_v6.1_3output_int8_1b_BM1684.bmodel --dev_id=0 --conf_thresh=0.5 --nms_thresh=0.5 --classnames=../../coco.names
./yolov5_bmcv.soc --input=rtsp://admin:sangfor@123@192.168.17.253 --bmodel=/data/models/all16_v6.1_3output_int8_4b.bmodel --dev_id=0 --conf_thresh=0.5 --nms_thresh=0.5 --classnames=/data/models/all16.names

网络摄像头:安全帽

 ./yolov5_bmcv.soc  --bmodel=anquanmao.bmodel --dev_id=0 --conf_thresh=0.5 --nms_thresh=0.5 --classnames=../../coco.names 

Python推理

python3 yolov5_opencv.py --input rtsp://admin:1111111a@192.168.16.222  --bmodel ../yolov5s_v6.1_3output_int8_4b.bmodel

前端只展示一路摄像头,我们只需要做一路摄像头使用多个算法推理。

不展示的摄像头也要实时在后台推理,有出现问题时要及时报警。

这样我们需做出单路摄像头推理多算法(单摄像头单算法也行,把所有检测都放到一个模型里,输出时只输出他选择的那个)

把所有模型统一训练比较简单,后台一块推理

sophon-pipeline

本地编译
docker run -v $PWD/:/workspace -p 8001:8001 -it sophgo/tpuc_dev:latest
source scripts/envsetup.sh
sudo apt-get install -y  gcc-aarch64-linux-gnu g++-aarch64-linux-gnu libeigen3-dev
./tools/compile.sh soc /workspace/soc-sdk
开发板运行
linaro@bm1684:/data/sophon-pipeline/release/video_stitch_demo$ ./soc/video_stitch_demo --config=cameras_video_stitch1.json

英码

export PYTHONPATH=$PYTHONPATH:/system/libexport
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/system/lib/
python
pip3 install sophon_arm-master-py3-none-any.whl --force-reinstall 
pip3 install opencv-python-headless<4.3

开发板执行命令

python3 python/yolov5_opencv.py --input ../data/images/coco200/000000009772.jpg  --model  ../compilation.bmodel --dev_id 0 --conf_thresh 0.5 --nms_thresh 0.5 
python3 python/yolov5_opencv.py --input ../data/xiyanimg/000017.jpg  --model  ../compilation.bmodel --dev_id 0 --conf_thresh 0.5 --nms_thresh 0.5
python3 python/yolov5_video.py --input rtsp://admin:sangfor@123@192.168.17.253 --model  ../compilation.bmodel

image-20230418164224531

python3 python/yolov5_video.py --input rtsp://admin:1111111a@192.168.16.222  --model  ../compilation.bmodel --dev_id 0 --conf_thresh 0.5 --nms_thresh 0.5 
tar -zxf ~/Release_221201-public/sophon-mw_20221227_040823/sophon-mw-soc_*_aarch64.tar.gz

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/482862.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ROS基本框架2——在ROS开发中创建并使用自定义消息(C++版本)

ROS基本框架2——在ROS开发中创建并使用自定义消息(C++版本) code review! 参考笔记 1.ROS基本框架1——编写简单的发布者和订阅者(C++和Python版本) 2.ROS基本框架2——在ROS开发中创建并使用自定义消息(C++版本) 文章目录 ROS基本框架2——在ROS开发中创建并使用自定义…

实例讲解MATLAB绘图坐标轴标签旋转

在进行绘图时需要在图片上添加上做标轴的标签&#xff0c;但是当数据量比较多时&#xff0c;例如一天24小时的数据&#xff0c;这时把每个小时显示在左边轴的标签上&#xff0c;文字内容放不下&#xff0c;因此需要将坐标轴标签旋转一定的角度&#xff0c;这样可以更好在图形上…

Spark 内存管理机制

Spark 内存管理 堆内内存和堆外内存 作为一个 JVM 进程&#xff0c;Executor 的内存管理建立在 JVM(最小为六十四分之一&#xff0c;最大为四分之一)的内存管理之上&#xff0c;此外spark还引入了堆外内存&#xff08;不在JVM中的内存&#xff09;&#xff0c;在spark中是指不…

为什么爱用低秩矩阵

目录 为什么爱用低秩矩阵 一、定义与性质 二、区别与例子 为什么爱用低秩矩阵 我们更多地提及低秩分解而非满秩分解,主要是因为低秩分解在数据压缩、噪声去除、模型简化和特征提取等方面具有显著的优势。而满秩分解虽然能够保持数据的完整性,但在实际应用中的场景较为有限…

Dify+Docker

1. 获取代码 直接下载 &#xff08;1&#xff09;访问 langgenius/dify: Dify is an open-source LLM app development platform. Difys intuitive interface combines AI workflow, RAG pipeline, agent capabilities, model management, observability features and more, …

Android Studio的AI工具插件使用介绍

Android Studio的AI工具插件使用介绍 一、前言 Android Studio 的 AI 工具插件具有诸多重要作用&#xff0c;以下是一些常见的方面&#xff1a; 代码生成与自动补全 代码优化与重构 代码解读 学习与知识获取 智能搜索与资源推荐实际使用中可以添加注释&#xff0c;解读某段代…

DOCKER学习总结

这里写目录标题 一、Docker安装1.1 在线安装1.2 离线安装安装配置启动服务 1.3 配置镜像1.4 Docker启动相关命令 二、Docker三大核心概念2.1 镜像2.2 容器2.3 仓库2.3.1 公有仓库2.3.2 私有仓库 二、容器与虚拟机比较 一、Docker安装 1.1 在线安装 查看是否安装dockeryum lis…

深入浅出体验AI生图产品Dall-E

DALL-E是由OpenAI开发的一种革命性的AI图像生成工具&#xff0c;能够根据文本描述生成图像。它的名字灵感来源于著名画家萨尔瓦多达利&#xff08;Salvador Dal&#xff09;和皮克斯动画电影中的角色瓦力&#xff08;WALL-E&#xff09;&#xff0c;这暗示了其在艺术创造力与技…

OpenCV_Code_LOG

孔洞填充 void fillHole(const Mat srcBw, Mat &dstBw) {Size m_Size srcBw.size();Mat TempMat::zeros(m_Size.height2,m_Size.width2,srcBw.type());//延展图像srcBw.copyTo(Temp(Range(1, m_Size.height 1), Range(1, m_Size.width 1)));cv::floodFill(Temp, Point(…

YOLOv11改进,YOLOv11添加SAConv可切换空洞卷积,二次创新C3k2结构

摘要 作者提出的技术结合了递归特征金字塔和可切换空洞卷积,通过强化多尺度特征学习和自适应的空洞卷积,显著提升了目标检测的效果。 理论介绍 空洞卷积(Atrous Convolution)是一种可以在卷积操作中插入“空洞”来扩大感受野的技术,更有效地捕捉到图像中的大范围上下文…

2024信创数据库TOP30之华为Gauss DB

近日&#xff0c;由DBC联合CIW/CIS共同发布的“2024信创数据库TOP30”榜单正式揭晓&#xff0c;汇聚了国内顶尖的数据库企业及其产品&#xff0c;成为展示中国信创领域技术实力与发展潜力的重要平台。在这份榜单中&#xff0c;华为的GaussDB凭借其卓越的技术实力、广泛的行业应…

【Spring源码核心篇-07】spring事物传播机制的流程和原理

Spring源码核心篇整体栏目 内容链接地址【一】Spring的bean的生命周期https://zhenghuisheng.blog.csdn.net/article/details/143441012【二】深入理解spring的依赖注入和属性填充https://zhenghuisheng.blog.csdn.net/article/details/143854482【三】精通spring的aop的底层原…

Redis实现限量优惠券的秒杀

核心&#xff1a;避免超卖问题&#xff0c;保证一人一单 业务逻辑 代码步骤分析 全部代码 Service public class VoucherOrderServiceImpl extends ServiceImpl<VoucherOrderMapper, VoucherOrder> implements IVoucherOrderService {Resourceprivate ISeckillVoucher…

.NET8/.NETCore 依赖注入:自动注入项目中所有接口和自定义类

.NET8/.NETCore 依赖接口注入&#xff1a;自动注入项目中所有接口和自定义类 目录 自定义依赖接口扩展类&#xff1a;HostExtensions AddInjectionServices方法GlobalAssemblies 全局静态类测试 自定义依赖接口 需要依赖注入的类必须实现以下接口。 C# /// <summary>…

搭建一个基于Web的文档管理系统,用于存储、共享和协作编辑文档

搭建一个基于Web的文档管理系统&#xff0c;用于存储、共享和协作编辑文档 本项目采用以下架构&#xff1a; NFS服务器: 负责存储文档资料。Web服务器: 负责提供文档访问和编辑功能。SELinux: 负责权限控制&#xff0c;确保文档安全。Git服务器: 负责存储文档版本历史&#x…

gitee:创建仓库,存入本地文件至仓库

一、git下载 git:下载与安装-CSDN博客https://blog.csdn.net/weixin_46001736/article/details/144107485?sharetypeblogdetail&sharerId144107485&sharereferPC&sharesourceweixin_46001736&spm1011.2480.3001.8118 二、创建仓库 1、主页面->右上角新增…

计算机网络 —— HTTP 协议(详解)

前一篇文章&#xff1a;网页版五子棋—— WebSocket 协议_网页可以实现websocket吗-CSDN博客 目录 前言 一、HTTP 协议简介 二、HTTP 协议格式 1.抓包工具的使用 2.抓包工具的原理 3.抓包结果 4.HTTP协议格式总结 三、HTTP 请求 1. URL &#xff08;1&#xff09;UR…

关于单片机的原理与应用!

成长路上不孤单&#x1f60a;&#x1f60a;&#x1f60a;&#x1f60a;&#x1f60a;&#x1f60a; 【14后&#x1f60a;///计算机爱好者&#x1f60a;///目前正在学习C&#x1f60a;///持续分享所学&#x1f60a;///如有需要欢迎收藏转发///&#x1f60a;】 今日分享关于单片…

爬虫专栏第一篇:深入探索爬虫世界:基础原理、类型特点与规范要点全解析

本专栏会对爬虫进行从0开始的讲解&#xff0c;每一步都十分的细致&#xff0c;如果你感兴趣希望多多点赞收藏关注支持 简介&#xff1a;文章对爬虫展开多方面剖析。起始于爬虫的基本概念&#xff0c;即依特定规则在网络抓取信息的程序或脚本&#xff0c;在搜索引擎信息提取上作…

rabbitmq原理及命令

目录 一、RabbitMQ原理1、交换机&#xff08;Exchange&#xff09;fanoutdirecttopicheaders&#xff08;很少用到&#xff09; 2、队列Queue3、Virtual Hosts4、基础对象 二、RabbitMQ的一些基本操作:1、用户管理2、用户角色3、vhost4、开启web管理接口5、批量删除队列 一、Ra…