虚拟 DOM 和 真实DOM(概念、作用、Diff 算法)
1.1 概念
真实 DOM(Document Object Model):是浏览器中用于表示文档结构的树形结构。
<h2>你好</h2>
虚拟DOM:用 JavaScript 对象来模拟真实 DOM 的结构
{children: undefineddata: {}elm: h1key: undefinedsel: "h1"text: "你好h1"
}
步骤
1.用JS对象表示真实的DOM结构,生成一个虚拟DOM,再用虚拟DOM构建一个真实DOM树,渲染到页面
2.状态改变生成新的虚拟DOM,与旧的虚拟DOM进行比对,比对的过程就是DIFF算法,利用patch记录差异
3.把记录的差异用在第一个虚拟DOM生成的真实DOM上,视图就更新了。
(Vue.js 在早期开发过程中借鉴了 Snabbdom 的设计理念来构建自己的虚拟 DOM 系统)
1.2 作用
性能优化方面
真实DOM
- 当直接操作真实 DOM 时,比如频繁地添加、删除或修改节点,会引起浏览器的重排(reflow)和重绘(repaint)。
- 重排: DOM 结构的改变导致浏览器重新计算元素的几何属性,如位置、大小等;
- 重绘:元素的外观发生改变,如颜色、背景等变化,只是重新绘制外观而不涉及布局调整。
虚拟DOM
- 通过一种高效的 Diff 算法比较新旧虚拟 DOM 树的差异,可以快速地找出需要更新的部分,而不是每次都对整个 DOM 进行重新渲染。
- 虚拟 DOM 的操作在 JavaScript 层面进行,比直接操作真实 DOM 快得多
- 当组件的数据发生变化时,Vue.js 会收集一段时间内的数据变化,然后统一进行虚拟 DOM 的更新和差异比较,并根据差异更新真实 DOM,避免大量的无谓计算。
1.1 Diff 算法(源码地址)
它的主要作用是比较新数据与旧数据虚拟 DOM 树的差异,从而找出需要更新的部分,以便将这些最小化的变更应用到真实 DOM上,减少不必要的 DOM 操作,提高性能。
- 树diff的时间复杂度O(n^3)
第一,遍历tree1;第二,遍历tree2 第三,排序 1000个节点,要计算1亿次,算法不可用- 优化时间复杂度到O(n)
只比较同一层级,不跨级比较
tag不相同,直接删掉重建,不再深度比较
tag和key,两者都相同,则认为是相同的节点,不再深度比较
- 首先sameVNode 比较一下新旧节点是不是同一个节点(同级对比,不跨级)
下图比较第二层级的右侧,左边是P,右边是div, 那么会认为这两个节点完全不同,直接删除旧的p替换新的div。
因为 dom 节点做跨层级移动的情况还是比较少的,一般情况下都是同一层级的 dom 的增删改。
但是 diff 算法除了考虑本身的时间复杂度之外,还要考虑一个因素:dom 操作的次数。
如果是一个list数组,新旧节点只是前后顺序的改变,直接删除新增,dom渲染成本会增加。
2.当节点类型相同的时候,Diff 算法会比较节点的属性是否有变化。如果属性有变化,就更新真实 DOM 节点的属性。
例如input节点,旧虚拟 DOM 中的value属性为abc,新虚拟 DOM 中的value属性为def,Diff 算法会更新真实 DOM 中input节点的value属性。
3.当节点类型,属性都相同,则比较是否存在子节点,
4.如果新节点和老节点都有子节点,需要进一步比较(双端diff核心updateChildren)
- diff 算法我们从一端逐个处理的,叫做简单 diff 算法。简单 diff 算法其实性能不是最好的,比如旧的 vnode 数组是 ABCD,新的 vnode 数组是 DABC,按照简单 diff 算法,A、B、C 都需要移动。
那怎么优化这个算法呢?
- vue使用的是双端 diff 算法:是头尾指针向中间移动,分别判断头尾节点是否可以复用,如果没有找到可复用的节点再去遍历查找对应节点的下标,然后移动。全部处理完之后也要对剩下的节点进行批量的新增和删除。
后来,Vue3 又对 diff 算法进行了一次升级,叫做快速 diff 算法(后续补充)。
双端diff算法updateChildren 逻辑
先贴代码,然后解释代码的含义(部分调用方法代码 放在最后面)
function updateChildren (parentElm, oldCh, newCh, insertedVnodeQueue, removeOnly) {var oldStartIdx = 0; // 旧子节点start下标(游标)var newStartIdx = 0; // 新子节点start下标(游标)var oldEndIdx = oldCh.length - 1; // 旧子节点end下标(游标)var newEndIdx = newCh.length - 1; // 新子节点end下标(游标)var oldStartVnode = oldCh[0]; // 旧start节点(旧头)var newStartVnode = newCh[0]; // 新start节点(新头)var oldEndVnode = oldCh[oldEndIdx]; // 旧end节点(旧尾)var newEndVnode = newCh[newEndIdx]; // 新end节点(新尾)var oldKeyToIdx, idxInOld, vnodeToMove, refElm;var canMove = !removeOnly;checkDuplicateKeys(newCh);// 旧头子节点大于旧尾子节点,或者新头子节点大于新尾子节点时候跳出循环while (oldStartIdx <= oldEndIdx && newStartIdx <= newEndIdx) {if (isUndef(oldStartVnode)) {// 旧头不存在,oldStartIdx++oldStartVnode = oldCh[++oldStartIdx]; } else if (isUndef(oldEndVnode)) {// 旧尾不存在,oldEndIdx--oldEndVnode = oldCh[--oldEndIdx];// sameVnode key相同,tag相同...都相同} else if (sameVnode(oldStartVnode, newStartVnode)) {// 旧头、新头相同,调用 patchVnode 进行更新节点(如果有子节点,继续调用updateChildren,diff查找子节点新旧dom不同),// 旧头右移一位oldStartVnode++、新头右移一位newStartVnode++patchVnode(oldStartVnode, newStartVnode, insertedVnodeQueue, newCh, newStartIdx);oldStartVnode = oldCh[++oldStartIdx];newStartVnode = newCh[++newStartIdx];} else if (sameVnode(oldEndVnode, newEndVnode)) {// 旧尾、新尾相同,patchVnode更新节点,旧尾左移一位oldEndIdx--、新尾左移一位newEndIdx--patchVnode(oldEndVnode, newEndVnode, insertedVnodeQueue, newCh, newEndIdx);oldEndVnode = oldCh[--oldEndIdx];newEndVnode = newCh[--newEndIdx];} else if (sameVnode(oldStartVnode, newEndVnode)) { // Vnode moved right// 旧头、新尾相同,patchVnode更新节点,并且将旧头移到oldCh最后,旧头右移一位 oldStartIdx++、新尾左移一位newEndIdx--patchVnode(oldStartVnode, newEndVnode, insertedVnodeQueue, newCh, newEndIdx);canMove && nodeOps.insertBefore(parentElm, oldStartVnode.elm, nodeOps.nextSibling(oldEndVnode.elm));oldStartVnode = oldCh[++oldStartIdx];newEndVnode = newCh[--newEndIdx];} else if (sameVnode(oldEndVnode, newStartVnode)) { // Vnode moved left// 旧尾、新头相同,patchVnode更新节点,并且将旧尾移到oldCh最前面,新头右移一位 newStartIdx++、旧尾左移一位oldEndIdx--patchVnode(oldEndVnode, newStartVnode, insertedVnodeQueue, newCh, newStartIdx);canMove && nodeOps.insertBefore(parentElm, oldEndVnode.elm, oldStartVnode.elm);oldEndVnode = oldCh[--oldEndIdx];newStartVnode = newCh[++newStartIdx];} else {// Undef 判断未定义if (isUndef(oldKeyToIdx)) { oldKeyToIdx = createKeyToOldIdx(oldCh, oldStartIdx, oldEndIdx); }// isDef 判断新节点是否有key值唯一标示idxInOld = isDef(newStartVnode.key)? oldKeyToIdx[newStartVnode.key] //去旧oldCh 里面找是否有一样的key: findIdxInOld(newStartVnode, oldCh, oldStartIdx, oldEndIdx);// 在oldCh列表中查找与newStartVnode匹配的节点索引,如果节点相同,返回索引if (isUndef(idxInOld)) { // 遍历发现oldCh列表中没有和新节点相同的节点,创建新节点createElm(newStartVnode, insertedVnodeQueue, parentElm, oldStartVnode.elm, false, newCh, newStartIdx);} else { // 遍历发现oldCh列表中有和新节点key相同的节点vnodeToMove = oldCh[idxInOld];//进一步判断是否相等if (sameVnode(vnodeToMove, newStartVnode)) {// 相同,继续往下层判断更新节点patchVnode(vnodeToMove, newStartVnode, insertedVnodeQueue, newCh, newStartIdx);// 被移动的位置 undefined 占位 所以循环开头会增加isUndef 的判断oldCh[idxInOld] = undefined;// 将更改后的节点 移动位置canMove && nodeOps.insertBefore(parentElm, vnodeToMove.elm, oldStartVnode.elm);} else {// 节点不同,新建节点createElm(newStartVnode, insertedVnodeQueue, parentElm, oldStartVnode.elm, false, newCh, newStartIdx);}}newStartVnode = newCh[++newStartIdx];}}if (oldStartIdx > oldEndIdx) {// 旧子节点先遍历完,新子节点还有剩,调用addVnodes添加节点refElm = isUndef(newCh[newEndIdx + 1]) ? null : newCh[newEndIdx + 1].elm;addVnodes(parentElm, refElm, newCh, newStartIdx, newEndIdx, insertedVnodeQueue);} else if (newStartIdx > newEndIdx) {// 新子节点先遍历完,旧子节点还有剩,调用removeVnodes删除节点removeVnodes(oldCh, oldStartIdx, oldEndIdx);}
}
开启一个循环,循环的条件就是 oldStart 不能大于oldEnd ,newStart不能大于newEnd,以下是循环的重要判断
- 跳过undefined
**if (isUndef(oldStartVnode))**
为什么会有undefined,老节点移动过程中,会产生undefined占位,之后的流程图会说明清楚。这里只要记住,如果旧开始节点为undefined,就后移一位;如果旧结束节点为undefined,就前移一位。
- 快捷对比(https://www.jianshu.com/p/b9916979a740
)**4个 else if(sameVnode(xxx))**
1
新开始和旧开始节点比对 如果匹配,表示它们位置都是对的,Dom不用改,就将新、旧节点开始的下标往后移一位即可。
2
旧结束和新结束节点比对 如果匹配,也表示它们位置是对的,Dom不用改,就将新、旧节点结束的下标前移一位即可。
3
旧开始和新结束节点比对 如果匹配,位置不对需要更新Dom视图,将旧开始节点对应的真实Dom插入到最后一位,旧开始节点下标后移一位,新结束节点下标前移一位。
4
旧结束和新开始节点比对 如果匹配,位置不对需要更新Dom视图,将旧结束节点对应的真实Dom插入到旧开始节点对应真实Dom的前面,旧结束节点下标前移一位,新开始节点下标后移一位。
- key值查找(2.快捷对比都不满足的情况下)
**}else {**
将旧节点数组剩余的vnode(oldStartIdx到oldEndIdx之间的节点)进行一次遍历,生成由vnode.key作为键,idx索引作为值的对象oldKeyToIdx,然后遍历新节点数组的剩余vnode(newStartIdx 到 newEndIdx 之间的节点),根据新的节点的key在oldKeyToIdx进行查找。
1
找到相同的key
- 如果和已有key值匹配 那就说明是已有的节点,只是位置不对,则将找到的节点插入到 oldStartIdx 对应的 vnode 之前;并且,这里会将旧节点数组中 idxInOld 对应的元素设置为 undefined。
- 如果和已有key值不匹配,那就说明是新的节点,那就创建一个对应的真实Dom节点,插入到旧开始节点对应的真实Dom前面即可
2
没有相同key
- 没有找到对应的索引,则直接createElm创建新的dom节点并将新的vnode插入 oldStartIdx 对应的 vnode 之前。
以上是while内部处理,以下是while外部处理
- 剩余元素处理(不满足循环条件后退出,循环外处理剩余元素)
循环外
旧节点数组遍历结束、新节点数组仍有剩余
,经过两端对比查找都没有查找到,则说明新插入内容是处于 oldstartIdx与 oldEndIdx 之间的,所以可以直接在 newEndIdx 对应的 vnode 之前创建插入新节点即可。新节点数组遍历结束、旧节点数组仍有剩余
,则遍历旧节点oldStartIdx 到 oldEndIdx 之间的剩余数据,进行移除
因为旧节点oldStartIdx之前的数据和 oldEndIdx之后的数据都是对比确认之后的,且数量与新节点数组相同,则中间剩下的都是要删除的节点
以上便是vue2的diff的核心流程了,通过一个例子再来感受一下:
在每个循环单元中,我们执行下面的策略:
分支0:旧头遇到空,指针向右移动 / 旧尾不存在,指针向左移动
分支1:比较oldStart和newStart是否一致,如果一致,两个指针向右移动即可
分支2:比较oldEnd和newEnd是否一致,如果一致,两个指针向左移动即可
分支3:比较oldStart和newEnd是否一致,如果一致,就需要移动节点,移动节点都针对old的操作,将旧开始节点对应的真实Dom插入到oldEnd后面,oldStart节点下标后移一位,newEnd节点下标前移一位。
分支4:比较newStart和oldEnd是否一致,如果一致,就需要移动节点,将oldEnd移动到oldStart的前一个。
分支5:如果以上都没有命中,看看newStart是否在old中存在,如果存在,找到是第几个,假设是在old中的第i个位置,接下来将第i个位置的元素移动到oldStart的前一位,然后将当前第i位置空(所以会存在undef校验)。如果不存在说明创建了一个新的元素,需要执行创建策略。
循环1
:
第一步:A不等于B ,未命中分支1
第二步:D不等于C, 未命中分支2
第三步:A不等于C ,未命中分支3
第四步:B不等于D,未命中分支4
第五步:进入分支5,newStart在old中是否存在,执行之前的key值查找:
第一轮循环结束:oldStart指向A,oldEnd指向D,newStart指向A,newEnd指向C
循环2
第一步:判断 A 等于 A,命中分支1,指针都向右移动。
第二轮循环结束:oldStart指向空,oldEnd指向D,newStart指向D,newEnd指向C
循环3
: 第一步:oldStart遇到空,命中分支0,指针向右移动,oldStart指向C。
第3轮循环结束 oldStart指向C ,oldEnd指向D,newStart指向D,newEnd指向C
![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/f47f810ae9f644fb85865b48b5813203.png
循环4
第一步:判断 D不等于C,未命中分支1
第二步:判断C不等于D,未命中分支2。
第三步:判断C等于C,命中分支3,将oldStart向oldEnd下一个移动,oldStart++。
第4轮循环结束:oldStart指向D,oldEnd指向D,newStart指向D,newEnd指向C。
循环5
第一步:判断 D等于D ,命中分支1,指针向右移动,oldStart++。
第5轮循环结束:oldStart指向C,oldEnd指向D,newStart指向C,newEnd指向C。
这时候循环已经结束,因为oldStart已经大于oldEnd。
当前的案例已经结束,old已经在相对次序上和new一模一样了,虽然在数据结构上有两个空在那里,而实际上的DOM结构已经移动到了正确的位置上,空对应在DOM上就是什么都没有,所以这个移动是正确的
如果 循环退出后,新节点数组仍有剩余 或者 旧节点数组仍有剩余
两者只有一种情况
接着以上的案例:
旧节点数组遍历结束、新节点数组仍有剩余
,经过两端对比查找都没有查找到,则说明新插入内容是处于 oldstartIdx与 oldEndIdx 之间的,所以可以直接在 newEndIdx 对应的 vnode 之前创建插入新节点即可。新节点数组遍历结束、旧节点数组仍有剩余
,则遍历旧节点oldStartIdx 到 oldEndIdx 之间的剩余数据,进行移除
因为旧节点oldStartIdx之前的数据和 oldEndIdx之后的数据都是对比确认之后的,且数量与新节点数组相同,则中间剩下的都是要删除的节点
部分调用函数代码简化版
isSameVnode简化版:
// asyncFactory 异步组件 isComment 注释节点
function sameVnode(a, b) {return (a.key === b.key &&a.asyncFactory === b.asyncFactory &&((a.tag === b.tag &&a.isComment === b.isComment &&isDef(a.data) === isDef(b.data) &&sameInputType(a, b)) ||(isTrue(a.isAsyncPlaceholder) && isUndef(b.asyncFactory.error))))
}
patchVnode简化版:将新节点的状态更新到旧节点对应的真实 DOM 节点上
function patchVnode(oldVnode, newVnode) {// 如果新旧节点是同一个对象,直接返回,无需更新if (oldVnode === newVnode) {return;}// 获取新旧节点对应的真实DOM元素const elm = oldVnode.elm;// 1. 更新属性部分const oldProps = oldVnode.data && oldVnode.data.attrs;const newProps = newVnode.data && newVnode.data.attrs;// 遍历新节点属性来更新或添加属性到真实DOM元素上for (let key in newProps) {//...}// 移除旧节点有但新节点没有的属性for (let key in oldProps) {//...}// 2. 更新子节点部分const oldChildren = oldVnode.children;const newChildren = newVnode.children;// 新旧子节点都是文本节点的情况,直接更新文本内容if (typeof oldChildren ==='string' && typeof newChildren ==='string') {if (oldChildren!== newChildren) {elm.textContent = newChildren;}} else if (Array.isArray(oldChildren) && Array.isArray(newChildren)) {// 继续updateChildren 处理ChildrenupdateChildren(elm, oldChildren, newChildren); }
}
findIdxInOld简化版:新节点在旧节点列表中查找是否有相同的
function findIdxInOld(newVnode, oldCh, start, end) {for (let i = start; i <= end; i++) {let oldVnode = oldCh[i];if (sameVnode(newVnode, oldVnode)) {// 如果节点相同(通过key和标签...判断),返回索引return i;}}return -1;
}
双端对比与生成索引 map 两种方式 减少了简单算法中的多次循环操作,新旧数组均只需要进行一次遍历即可将所有节点进行对比。
Snabbdom 待完善
本文参考文章
https://www.jb51.net/javascript/2968153yn.htm
https://www.zzsucai.com/biancheng/24014.html
https://news.sohu.com/a/564921201_121124376