基于Matlab BP神经网络的电力负荷预测模型研究与实现

随着电力系统的复杂性和规模的不断增长,准确的电力负荷预测对于电网的稳定性和运行效率至关重要。传统的负荷预测方法依赖于历史数据和简单的统计模型,但这些方法在处理非线性和动态变化的负荷数据时,表现出较大的局限性。近年来,深度学习和神经网络技术为电力负荷预测提供了新的思路和解决方案。

本文提出了一种基于反向传播(BP)神经网络的电力负荷预测模型,通过对历史电力负荷数据的学习,实现对未来电力负荷的精准预测。首先,本文介绍了数据预处理和特征选择的过程,将过去24小时的电力负荷数据作为模型的输入特征。然后,采用BP神经网络构建了一个多层前馈神经网络,并使用Levenberg-Marquardt(trainlm)算法对网络进行训练。通过100轮的训练,网络模型能够有效地拟合电力负荷的时序变化。

为了评估模型的性能,本文采用了均方根误差(RMSE)、平均绝对误差(MAE)和平均绝对百分比误差(MAPE)等评估指标,对模型的预测精度进行了全面的分析。同时,本文还展示了模型在未来48小时电力负荷预测中的应用,并与实际数据进行了对比,结果表明该模型能够准确预测电力负荷的变化趋势。

实验结果表明,基于BP神经网络的电力负荷预测模型具有较强的适应性和预测能力,能够为电力系统的负荷管理和调度提供有效的决策支持。

算法流程

运行效果

运行 BP.m
图1 训练参数与结果

(1)最大训练轮数:训练已达到最大训练轮数,意味着模型已经完成了预定的训练周期。
(2)性能指标的改善:从初始值约 5.12e+03 到 0.508,显示了模型在训练过程中显著提升了预测性能。目标性能值设定为 0.001,这意味着模型的目标误差已经接近设定值,表明模型已较为稳定。
(3)训练时长:整个训练过程的时间仅为 00:00:01,说明训练过程相对较短,可能由于模型的复杂度和数据量较小,训练时间得以控制。
(4)MSE(均方误差):作为主要的性能评估指标,MSE衡量了模型预测值与真实值之间的差异,值越小表示模型越准确。

图2 训练进度图

(1)误差变化:在前 10 轮迭代中,误差从约 5000 快速下降,表明模型在初期就能够迅速学习数据中的特征。
(2)收敛趋势:经过约 20 轮后,误差趋于稳定,说明网络已接近最优解,达到了良好的收敛性能。收敛速度较快,意味着训练过程高效。

图3 预测值与真实值对比图

(1)预测结果跟踪:红线表示模型的预测值,蓝线表示实际真实值。从图中可以看到,预测值总体上较好地跟踪了真实值的走势,显示了模型在捕捉时间序列趋势上的有效性。
(2)误差峰值:在时间点 20 附近,出现了明显的峰值,且在某些峰值处存在轻微的预测过冲现象。这样的过冲可能是由于模型在快速变化的趋势上响应过度所导致的,需要进一步优化模型的鲁棒性。

图4 预测误差分布图

(1)误差分布:误差主要集中在 -3 到 4 之间,显示了大部分预测误差相对较小,符合常见的模型训练情况。
(2)误差高频区间:误差最高频率出现在 2 附近,表明大部分预测结果的误差相对较小。
(3)对称性:误差分布相对对称,意味着模型的预测误差较为均匀,未表现出偏向某一方向的偏差。

图5 模型评估指标

(1)RMSE(均方根误差):约 2.4,较低的RMSE表示模型的预测误差较小,预测结果较为精确。
(2)MAE(平均绝对误差):约 2.1,该指标也表明模型误差较小,较为可靠。
(3)MAPE(平均绝对百分比误差):约 2.8,低于 5% 的MAPE通常表示模型的预测精度较高,适合实际应用。

图6 未来48小时电力负荷预测图

这个图表展示了 未来48小时的电力负荷预测,成功捕捉了负荷的周期性波动特征,符合电力负荷的日内变化模式。预测结果的周期性变化和负荷值的波动范围显示了模型较好地拟合了实际的电力负荷需求变化趋势。模型能够准确预测出不同时间段的负荷变化,显示出它对时序数据的有效建模能力。

图7 模型评估指标

1.训练轮数:训练了 100 轮,模型经过足够多的迭代,能够有效拟合训练数据。
2.训练序列的长度:为 101,说明训练数据集的大小合理。
3.误差指标:
(1)RMSE:3.4293,表示整体误差相对适中,模型需要进一步优化。
(2)MAE:2.0996,误差较为稳定,适合进一步优化。
(3)MAPE:2.85%,表明模型在预测时的误差占真实值的比例较小,具有良好的预测能力。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/483433.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

非标自动化行业ERP选型与案例展示!

非标自动化行业,那么使用的就是非标设备,什么是非标设备呢?用一句话来说明就是指设计制造方面没有形成国家标准的设备。 在如今追求高效的社会,各行各业都朝着提高效率精益工艺,缩减流程,调整业务,用各种…

十、软件设计架构-微服务-服务调用Dubbo

文章目录 前言一、Dubbo介绍1. 什么是Dubbo 二、实现1. 提供统一业务api2. 提供服务提供者3. 提供服务消费者 前言 服务调用方案--Dubbo‌ 基于 Java 的高性能 RPC分布式服务框架,致力于提供高性能和透明化的RPC远程服务调用方案,以及SOA服务治理方案。…

【AI系统】CANN 算子类型

CANN 算子类型 算子是编程和数学中的重要概念,它们是用于执行特定操作的符号或函数,以便处理输入值并生成输出值。本文将会介绍 CANN 算子类型及其在 AI 编程和神经网络中的应用,以及华为 CANN 算子在 AI CPU 的详细架构和开发要求。 算子基…

uniapp使用扩展组件uni-data-select出现的问题汇总

前言 不知道大家有没有学习过我的这门课程那,《uniCloud云开发Vue3版本官方推荐用法》,这么课程已经得到了官方推荐,想要快速上手unicloud的小伙伴们,可以学习一下这么课程哦,不要忘了给一键三连呀。 在录制这门课程…

TypeScript和JavaScript区别详解

文章目录 TypeScript和JavaScript区别详解一、引言二、类型系统1、静态类型检查TypeScript 示例JavaScript 示例 2、类型推断TypeScript 示例JavaScript 示例 三、面向对象编程TypeScript 示例JavaScript 示例 四、使用示例1. 环境搭建2. 创建TypeScript项目3. 安装TypeScript插…

前端开发 之 15个页面加载特效上【附完整源码】

文章目录 一:彩球环绕加载特效1.效果展示2.HTML完整代码 二:跷跷板加载特效1.效果展示2.HTML完整代码 三:两个圆形加载特效1.效果展示2.HTML完整代码 四:半环加载特效1.效果展示2.HTML完整代码 五:音乐波动加载特效1.效…

基于C#+SQLite开发数据库应用的示例

SQLite数据库,小巧但功能强大;并且是基于文件型的数据库,驱动库就是一个dll文件,有些开发工具 甚至不需要带这个dll,比如用Delphi开发,用一些三方组件;数据库也是一个文件,虽然是个文…

生态环境一体化智慧监管平台

在数字化和智能化的浪潮中,生态环境保护与治理正迎来革命性的变化。生态环境一体化智慧监管平台的建设,不仅响应了这一趋势,而且为中国式现代化的生态治理提供了新的解决方案。本文将深度分析该平台的建设内容,探讨其在推动生态文…

3.4 朴素贝叶斯算法

3.4 朴素贝叶斯算法 朴素? 假设:特征与特征之间是相互独立的 应用:文本分类,单词作为特征 3.4.1 什么是朴素贝叶斯算法 朴素贝叶斯(Naive Bayes)是一种基于贝叶斯定理的简单概率分类器,它假…

使用Mybatis-Plus时遇到的报错问题及解决方案

创建Maven项目后&#xff0c;一个个手动添加spring-boot和mybatis-plus依赖冲突问题 解决方案&#xff1a;找一个现成的pom.xml文件替换后重新加载&#xff08;以下提供java8&#xff0c;对应的spring-boot,mybatis-plus依赖&#xff09; <?xml version"1.0" en…

VSCode如何关闭Vite项目本地自启动

某些情况下VSCode打开Vite项目不需要自动启动&#xff0c;那么如何关闭该功能 文件>首选项>设置 搜索vite 将Vite:Auto Start 勾选取消即可

物联网——WatchDog(监听器)

看门狗简介 独立看门狗框图 看门狗原理&#xff1a;定时器溢出&#xff0c;产生系统复位信号&#xff1b;若定时‘喂狗’则不产生系统复位信号 定时中断基本结构&#xff08;对比&#xff09; IWDG键寄存器 独立看门狗超时时间 WWDG(窗口看门狗) WWDG特性 WWDG超时时间 由于…

在办公室环境中用HMD替代传统显示器的优势

VR头戴式显示器&#xff08;HMD&#xff09;是进入虚拟现实环境的一把钥匙&#xff0c;拥有HMD的您将能够在虚拟现实世界中尽情探索未知领域&#xff0c;正如如今的互联网一样&#xff0c;虚拟现实环境能够为您提供现实中无法实现的或不可能实现的事。随着技术的不断进步&#…

黑马2024AI+JavaWeb开发入门Day04-SpringBootWeb入门-HTTP协议-分层解耦-IOCDI飞书作业

视频地址&#xff1a;哔哩哔哩 讲义作业飞书地址&#xff1a;day04作业&#xff08;IOC&DI&#xff09; 作业很简单&#xff0c;主要是练习拆分为三层架构controller、service、dao&#xff0c;并基于IOC & DI进行解耦。 1、结构&#xff1a; 2、代码 网盘链接&…

【iOS】多线程基础

【iOS】多线程基础 文章目录 【iOS】多线程基础前言进程与线程进程进程的状态进程的一个控制结构进程的上下文切换 线程为什么要用线程什么是线程线程和进程的关系线程的上下文切换 线程和进程的优缺点 小结 前言 笔者由于对于GCD不是很了解&#xff0c;导致了项目中网络请求哪…

Android矩阵Matrix在1张宽平大Bitmap批量绘制N个小Bitmap,Kotlin(1)

Android矩阵Matrix在1张宽平大Bitmap批量绘制N个小Bitmap&#xff0c;Kotlin&#xff08;1&#xff09; import android.graphics.Bitmap import android.graphics.BitmapFactory import android.graphics.Canvas import android.graphics.Color import android.graphics.Matri…

vue2+svg+elementui实现花瓣图自定义el-select回显色卡图片

项目需要实现花瓣图&#xff0c;但是改图表在echarts&#xff0c;highCharts等案例中均未出现&#xff0c;有类似的韦恩图&#xff0c;但是和需求有所差距&#xff1b; 为实现该效果&#xff0c;静态图表上采取svg来手动绘制花瓣&#xff1a; 确定中心点&#xff0c;以该点为中…

二百七十八、ClickHouse——将本月第一天所在的那一周视为第一周,无论它是从周几开始的,查询某个日期是本月第几周

一、目的 ClickHouse指标表中有个字段week_of_month&#xff0c;含义是这条数据属于本月第几周。 而且将本月第一天所在的那一周视为第一周&#xff0c;无论它是从周几开始的。比如2024-12-01是周日&#xff0c;即12月第一周。而2024-12-02是周一&#xff0c;即12月第二周 二…

快充协议IC支持全协议,内部集成LDO支持输出电压3.3V,支持宽电压范围3.3~30V

随着快充技术的不断发展&#xff0c;越来越多的电子产品都使用上了快充&#xff0c;市面上大多数受电端取电芯片只有取电功能&#xff0c;而有些产品则需要更多功能支持&#xff0c;例如产品需要快充支持又要读取电压&#xff0c;就只能在使用取电协议芯片的同时再增加一颗串口…

深入傅里叶级数与傅里叶变换:从基础到应用

傅里叶分析是数学、物理和工程领域的一项基础工具&#xff0c;其核心思想是将复杂的信号或函数分解为一系列简单的正弦和余弦函数的叠加。本文将带你从傅里叶级数入门&#xff0c;逐步深入傅里叶变换的概念及其应用场景。 一、傅里叶级数&#xff1a;周期信号的分解 1. 什么是傅…