电子商务人工智能指南 5/6 - 丰富的产品数据

 介绍

 81% 的零售业高管表示, AI 至少在其组织中发挥了中等至完全的作用。然而,78% 的受访零售业高管表示,很难跟上不断发展的 AI 格局 近年来,电子商务团队加快了适应新客户偏好和创造卓越数字购物体验的需求。采用 AI 不再是一种选择,而是零售商推动规模增长和保持市场差异化的必要条件。电子商务公司现在正在使用 AI 来创建新的客户参与形式,增强在线结账解决方案,并推动数字商务的经济高效流程。 

本指南将全面概述人工智能在电子商务公司的主要应用,并分享 Scale 在零售领域的经验最佳实践。 

电子商务人工智能:为什么它很重要?

人工智能对电子商务有多种益处:

增强客户体验: 电子商务的 AI 解决方案可以帮助公司个性化产品推荐、改善搜索结果并更好地了解客户情绪。借助准确的个性化和推荐机器学习模型,公司可以帮助减少购买时间、在产品详细信息页面上准确描述产品并更好地了解客户行为。通过投资准确的 ML 模型,团队可以实现提高购物转化率和提高客户满意度的目标。此外,电子商务公司可以通过删除违反平台准则的内容(从用户生成的内容到商家特定数据)来提高信任度和安全性。 

最大化盈利能力:  ML 模型可以帮助根据购物和浏览历史提供准确且有针对性的产品推荐,并细分客户分析以提供更准确的广告。通过使用 AI 丰富内容元数据,团队可以更好地了解内容和产品格局。这使电子商务公司能够更好地专注于产品和内容增长工作,并尽早缩小趋势范围。 

加速运营流程: 购物和内容趋势瞬息万变,而手动操作流程却过于缓慢。加速新商家入职、需求预测和内容优化等运营流程。人机交互等技术可以增强机器学习模型,使其达到人类水平的准确性和质量。 

现有的没有人工智能的流程无法满足消费者不断变化的需求。电子商务市场面临三大挑战: 

  1. 成本和投资呈指数级增长: 仅使用内部运营团队来管理电子商务数据和激活新产品通常会抑制增长。手动操作来获取、清理和丰富数据非常耗时。生成新产品资产(例如产品描述和产品摄影)的成本很高。
  2. 缺乏属性数据: 个性化系统受限于稀疏的属性数据。产品数据可能包含不正确的信息、重复项和缺失的属性,导致搜索和产品推荐效果不佳。用户行为内容元数据不够详细,导致内容推荐系统存在缺陷。 
  3. 手动流程太慢: 消费者行为和内容趋势变化很快。当前系统需要太多时间和流程来发现和展示热门内容,平台在保持客户参与度和转化率方面落后。 

在本指南中,我们将解释帮助解决这些挑战的主要用例,并提供帮助您利用 AI 发展业务的路线图。

 电子商务中的人工智能:主要用例

电子商务中人工智能有许多不同的应用。在本指南中,我们将重点介绍电子商务中以数据为中心的应用程序的六个主要类别:

  1. 搜索、广告和发现
  2. 需求预测和库存管理
  3. 聊天机器人和客户服务
  4. 内容理解 
  5. 丰富的产品数据
  6. 人工智能生成的产品图像

丰富的产品数据

电子商务数据的核心是高质量的产品目录数据。准确的产品目录数据包括显示在产品详细信息页面 (PDP) 上的详细属性,例如产品描述、颜色、材质、尺寸、品牌和产品分类。电子商务公司可以投资目录数据的用例主要有三种:

目录创建: 目录创建是电子商务团队在社交媒体等平台上构建新购物体验的绝佳起点。创建使团队能够从卖家信息流和公共互联网中汇总、丰富和刷新产品数据。机器学习基础设施可以提取品牌、卖家或网站,并提供所有可用产品和相关属性。应用程序示例包括社交商务,其中购物原生内置于社交媒体平台中。这为现有数字网络应用程序上的客户提供了新的购物机会。 

属性丰富: 将属性数据添加到现有产品中,以帮助增强产品分类、按相关性对产品进行排名并生成细粒度的搜索结果。通过使用依赖于命名实体识别和图像分类技术的机器学习模型,可以从图像和文本中提取属性。改进底层产品目录数据非常重要,因为不正确的数据会导致搜索结果不佳、产品类别分类不正确或产品推荐不准确。由于搜索和推荐系统建立在准确的产品属性之上,因此属性丰富对于希望改进搜索和相关性的产品团队来说至关重要。 


详细的产品数据(例如描述、属性、变体和交互式媒体)对电子商务公司的收入具有复合影响。

产品匹配和重复数据删除:  AI 加速的人工注释可以帮助删除重复的产品、合并产品变体、修复产品详细信息页面上的不一致问题以及更正错误以实现项目权限。匹配端点获取有关两个不同产品的信息,并确定它们是否匹配以及相应的模型置信度得分。查找产品匹配可以帮助从目录中删除重复的产品,从而为客户提供更准确的结果。

电子商务团队可以通过准确、丰富的产品数据提高产品网站的参与度、可发现性和转化率。

ApiSmart

ApiSmart Api design Copilot - ApiHugApiSmart make your api design and implement happier​编辑https://apihug.com/zhCN-docs/copiloticon-default.png?t=O83Ahttps://apihug.com/zhCN-docs/copilot

ApiSmart 已经支持18家大模型供应商,n+大模型接入(本地环境可无限多模型);

  1. OpenAi

  2. Azure

  3. Gemini

  4. Anthropic

  5. DeepInfra

  6. Mooshot

  7. Zhipu

  8. DeepSeek

  9. Qianfan

  10. Grop

  11. Ollama

  12. Mistral

  13. LMStudio

  14. OpenRouter

  15. Jan

  16. GPT4All

  17.  通义-阿里

  18.  混元-腾讯

ApiHug - API Design & Develop New Paradigm.ApiHug - API Design & Develop New Paradigm.https://apihug.com/icon-default.png?t=O83Ahttps://apihug.com/ApiSmart Api design Copilot - ApiHugApiSmart make your api design and implement happierhttps://apihug.com/zhCN-docs/copiloticon-default.png?t=O83Ahttps://apihug.com/zhCN-docs/copilot

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/488735.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JS进阶DAY3|事件(三)事件委托

目录 一、事件委托 1.1 概念 1.2 代码示例 二、tab栏切换案例 一、事件委托 1.1 概念 事件委托是一种在JavaScript中常用的技术,它利用了DOM事件冒泡的原理。事件冒泡是指当在DOM树中较低层次的元素上发生事件时,这个事件会向上冒泡到更高层次的元素…

Y3编辑器文档4:触发器1(对话、装备、特效、行为树、排行榜、不同步问题)

文章目录 一、触发器简介1.1 触发器界面1.2 ECA语句编辑及快捷键1.3 参数设置1.4 变量设置1.5 实体触发器1.6 函数库与触发器复用 二、触发器的多层结构2.1 子触发器(在游戏内对新的事件进行注册)2.2 触发器变量作用域2.3 复合条件2.4 循环2.5 计时器2.6…

LoRA:低秩分解微调与代码

传统的微调,即微调全量参数,就是上面的公式,但是我们可以通过两个矩阵,来模拟这个全量的矩阵,如果原来的W是(N * N)维度,我们可以通过两个(N * R) 和 (R * N)的矩阵矩阵乘,来模拟微调的结果。 …

鸿蒙系统-前端0帧起手

鸿蒙系统-前端0帧起手 先search 一番 找到对应的入门文档1. 运行项目遇到问题 如下 (手动设计npm 的 registry 运行 npm config set registry https://registry.npmjs.org/)2.运行后不支持一些模拟器 配置一下(如下图,运行成功&am…

Java面试之实现多线程(二)

此篇接上一篇Java面试之什么是多线程(一) Java多线程是Java语言中的一个重要特性,它可以实现并发处理、提高程序的性能和响应能力。开发者需要了解多线程的概念和机制,并采用合适的多线程编程模型和同步机制,以保证程序的正确性和稳定性。Jav…

酒店/电影推荐系统里面如何应用深度学习如CNN?

【1】酒店推荐系统里面如何应用CNN?具体过程是什么 在酒店推荐系统中应用卷积神经网络(CNN)并不是一个常见的选择,因为 CNN 主要用于处理具有空间结构的数据,如图像、音频和某些类型的序列数据。然而,在某…

三、nginx实现lnmp+discuz论坛

lnmp l:linux操作系统 n:nginx前端页面 m:mysql数据库,账号密码,数据库等等都保存在这个数据库里面 p:php——nginx擅长处理的是静态页面,页面登录账户,需要请求到数据库&#…

03篇--二值化与自适应二值化

二值化 定义 何为二值化?顾名思义,就是将图像中的像素值改为只有两种值,黑与白。此为二值化。 二值化操作的图像只能是灰度图,意思就是二值化也是一个二维数组,它与灰度图都属于单信道,仅能表示一种色调…

CV之UIGM之OmniGen:《OmniGen: Unified Image Generation》翻译与解读

CV之UIGM之OmniGen:《OmniGen: Unified Image Generation》翻译与解读 导读:这篇论文介绍了OmniGen,一个用于统一图像生成的扩散模型。 >> 背景痛点:目前的图像生成模型大多专注于特定任务,例如文本到图像生成。…

数据分析python小工具录入产品信息到Excel

在没有后台管理系统的时候,有时候为了方便起见,想提供一个输入框让运营人员直接输入,然后数据就会以数据库的形式存进数据库 效果图: 输入用户名 输入数据 输入信息后点击添加到表格,检查后方便批量保存到excel …

scala的泛型2

package test55 //隐式转换 //1.隐式函数 //2.隐式类 //3.隐式对象 //4.函数的隐式参数//泛型:类型参数化。 //Pair 约定一对数据 class Pair[T](var x:T, var y:T) //泛型的应用场景: //1.泛型函数 //2.泛型类 //3.泛型特质 object test2 {def main(arg…

【刷题22】BFS解决最短路问题

目录 一、边权为1的最短路问题二、迷宫中离入口最近的出口三、最小基因变化四、单词接龙五、为高尔夫比赛砍树 一、边权为1的最短路问题 如图:从A到I,怎样走路径最短 一个队列一个哈希表队列:一层一层递进,直到目的地为止哈希表&…

Google Cloud Database Option(数据库选项说明)

关系数据库 在关系数据库中,信息存储在表、行和列中,这通常最适合结构化数据。因此,它们用于数据结构不经常更改的应用程序。与大多数关系数据库交互时使用 SQL(结构化查询语言)。它们为数据提供 ACID 一致性模式&am…

【Java 学习】面向程序的三大特性:封装、继承、多态

引言 1. 封装1.1 什么是封装呢?1.2 访问限定符1.3 使用封装 2. 继承2.1 为什么要有继承?2.2 继承的概念2.3 继承的语法2.4 访问父类成员2.4.1 子类中访问父类成员的变量2.4.2 访问父类的成员方法 2.5 super关键字2.6 子类的构造方法 3. 多态3.1 多态的概…

PAT甲级-1114 Family Property

题目 题目大意 共有n个户主,每个户主的房产按照“ 户主id 父亲id 母亲id 孩子个数 孩子的id 房产数 房产面积 ”的格式给出。如果父亲或母亲不存在,值为-1。每个户主及其父亲母亲孩子可以构成一个家庭,不同户主如果有相同的家人,…

如何不重启修改K8S containerd容器的内存限制(Cgroup方法)

1. 使用crictl 查看容器ID crictl ps2. 查看Cgroup位置 crictl inspect 容器ID3. 到容器Cgroup的目录下 使用上个命令就能找到CgroupPath 4 . 到cgroup目录下 正确目录是 : /sys/fs/cgroup/memory/kubepods.slice/kubepods-burstable.slice/kubepods-burstable-podf68e18…

《计算机视觉:瓶颈之辩与未来之路》

一、计算机视觉的崛起 计算机视觉是使用计算机模仿人类视觉系统的科学,让计算机拥有类似人类提取、处理、理解和分析图像以及图像序列的能力。它是一个多学科交叉的领域,与机器视觉、图像处理、人工智能、机器学习等领域密切相关。 计算机视觉行业可分为…

Burp suite2 (泷羽sec)

声明 学习视频来自B站UP主 泷羽sec,如涉及侵泷羽sec权马上删除文章。 笔记只是方便各位师傅学习知识,以下网站只涉及学习内容,其他的都与本人无关,切莫逾越法律红线,否则后果自负 这节课旨在扩大自己在网络安全方面的知识面,了解网络安全领域的见闻,了…

Scala中求汉罗塔游戏

记:f(n,"A","B","C")表示n个盘子从A柱子上移动到C柱子上,借用B柱子的过程 f(要移动的盘子的个数,起点,辅助柱子,终点) 1.基本情况(直接能求的):f(1,"A",&…

mac 安装CosyVoice (cpu版本)

CosyVoice 介绍 CosyVoice 是阿里研发的一个tts大模型 官方项目地址:https://github.com/FunAudioLLM/CosyVoice.git 下载项目(非官方) git clone --recursive https://github.com/v3ucn/CosyVoice_for_MacOs.git 进入项目 cd CosyVoic…