一区向量加权算法优化INFO-CNN-SVM卷积神经网络结合支持向量机多特征分类预测

一区向量加权算法优化INFO-CNN-SVM卷积神经网络结合支持向量机多特征分类预测

目录

    • 一区向量加权算法优化INFO-CNN-SVM卷积神经网络结合支持向量机多特征分类预测
      • 分类效果
      • 基本描述
      • 程序设计
      • 参考资料

分类效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

基本描述

1.Matlab实现INFO-CNN-SVM向量加权算法优化卷积神经网络结合支持向量机多特征分类预测(完整源码和数据)

2.优化参数为:学习率,批量处理大小,正则化参数。

3.图很多,包括分类效果图,迭代优化图,混淆矩阵图。

4附赠案例数据可直接运行main一键出图,注意程序和数据放在一个文件夹,运行环境为Matlab2020及以上。

5.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。可在下载区获取数据和程序内容。

6.data为数据集,输入12个特征,分四类,采用CNN提取特征,LIBSVM进行数据分类。

注:程序和数据放在一个文件夹。

程序设计

  • 私信博主回复一区向量加权算法优化INFO-CNN-SVM卷积神经网络结合支持向量机多特征分类预测
%%  优化算法参数设置
SearchAgents_no = 8;                   % 数量
Max_iteration = 5;                    % 最大迭代次数%% 建立模型
lgraph = layerGraph();                                                   % 建立空白网络结构
tempLayers = [sequenceInputLayer([num_dim, 1, 1], "Name", "sequence")              % 建立输入层,输入数据结构为[num_dim, 1, 1]sequenceFoldingLayer("Name", "seqfold")];                            % 建立序列折叠层
lgraph = addLayers(lgraph, tempLayers);                                  % 将上述网络结构加入空白结构中
tempLayers = [convolution2dLayer([3, 1], 16, "Name", "conv_1", "Padding", "same")  % 建立卷积层,卷积核大小[3, 1]16个特征图reluLayer("Name", "relu_1")                                          % Relu 激活层lgraph = addLayers(lgraph, tempLayers);                                  % 将上述网络结构加入空白结构中tempLayers = [sequenceUnfoldingLayer("Name", "sequnfold")                          softmaxLayer("Name", "softmax")                                  % softmax激活层classificationLayer("Name", "classification")];                  % 分类层
lgraph = addLayers(lgraph, tempLayers);                              % 将上述网络结构加入空白结构中
lgraph = connectLayers(lgraph, "seqfold/out", "conv_1");             % 折叠层输出 连接 卷积层输入
lgraph = connectLayers(lgraph, "seqfold/miniBatchSize", "sequnfold/miniBatchSize"); % 折叠层输出连接反折叠层输入
lgraph = connectLayers(lgraph, "relu_2", "sequnfold/in");            % 激活层输出 连接 反折叠层输入%% 参数设置
options = trainingOptions('adam', ...     % Adam 梯度下降算法'MaxEpochs', 500,...                 % 最大训练次数 'InitialLearnRate', best_lr,...          % 初始学习率为0.001'L2Regularization', best_l2,...         % L2正则化参数'LearnRateSchedule', 'piecewise',...  % 学习率下降'LearnRateDropFactor', 0.1,...        % 学习率下降因子 0.1'LearnRateDropPeriod', 400,...        % 经过训练后 学习率为 0.001*0.1'Shuffle', 'every-epoch',...          % 每次训练打乱数据集'ValidationPatience', Inf,...         % 关闭验证'Plots', 'training-progress',...      % 画出曲线'Verbose', false);%% 训练
net = trainNetwork(p_train, t_train, lgraph, options);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/490033.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Stable Diffusion】SD安装、常用模型(checkpoint、embedding、LORA)、提示词具、常用插件

Stable Diffusion,一款强大的AI模型,让我们能够创造出惊人的艺术作品。本文将为您介绍如何安装Stable Diffusion以及深入使用的学习教程。 1. 安装Stable Diffusion (需要的小伙伴可以文末自行扫描获取) Stable Diffusion的安装可能是第一步&#xff0…

【工具变量】上市公司企业资本支出数据(1990-2022年)

一、计算方式:资本支出的公式为:经营租赁所支付的现金购建固定资产、无影资产和其他长期资产所支付的现金-处置固定资产、无形资产和其它长期资产而收回的现金净额。 二、数据范围:包括原始数据详细来源和最终数据结果 三、参考文献:[1]杨兴…

洛谷 P10483 小猫爬山 完整题解

一、题目查看 P10483 小猫爬山 - 洛谷 二、解题思路 我们将采取递归 剪枝的思想&#xff1a; sum数组存放每辆车当前载重。 每次新考虑一只小猫时&#xff0c;我们尝试把它放进每个可以放进的缆车中&#xff08;需要回溯&#xff09; for (int i 0; i < k; i) {if (sum[i]…

Leetcode二叉树部分笔记

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 Leetcode二叉树部分笔记 1.二叉树的最大深度2.同样的树3.翻转二叉树4.对称二叉树**5. **填充每个节点的下一个右侧节点指针 II**6. 二叉树展开为链表7. 路经总和8.完全二叉树…

如何用状态图进行设计06

独立的控制线程 扩展状态图也提供了获取无序的输入事件的方法。这意味着一个状态开始时&#xff0c;它可能位于一个或多个控制线程的交叉点。控制行为的每个独立线程都类似一个状态机&#xff0c;独自运行&#xff0c;互不干扰。因此&#xff0c;这些控制线程可能会同时发生状…

【多模态】MiniCPM-V多模态大模型使用学习

MiniCPM-V模型使用 前言1. 模型文件下载和选择2. 环境安装配置3. 模型微调3.1 qlora微调minicpm-v-int43.2 lora微调minicpm-v3.3 merge_lora3.4 lora微调后量化int4 4. 模型推理4.1 huggingface API4.2 swift API(A) swift&#xff08;不支持batch inference&#xff09;(B) s…

快速上手Neo4j图关系数据库

参考视频&#xff1a; 【IT老齐589】快速上手Neo4j网状关系图库 1 Neo4j简介 Neo4j是一个图数据库&#xff0c;是知识图谱的基础 在Neo4j中&#xff0c;数据的基本构建块包括&#xff1a; 节点(Nodes)关系(Relationships)属性(Properties)标签(Labels) 1.1 节点(Nodes) 节点…

Transformer: Attention Is All You Need (2017) 翻译

论文&#xff1a;Attention Is All You Need 下载地址如下: download: Transformer Attention Is All you need Attention Is All You Need 中文 《Attention Is All You Need》是《Transformer》模型的开创性论文&#xff0c;提出了一种全新的基于注意力机制的架构&#xf…

可视化报表如何制作?一文详解如何用报表工具开发可视化报表

在如今这个数据驱动的商业时代&#xff0c;众多企业正如火如荼地推进数字化转型&#xff0c;力求在激烈的市场竞争中占据先机。然而&#xff0c;随着业务规模的扩大和运营复杂度的提升&#xff0c;企业的数据量爆炸式增长&#xff0c;传统报表格式单一、信息呈现密集且不易解读…

Angular由一个bug说起之十二:网页页面持续占用CPU过高

随着网络日益发达&#xff0c;网页的内容也更加丰富&#xff0c;形式也更加多样化。而随之而来的性能问题也不容小觑。这篇文章我会根据我在实践中遇到的一个问题来总结&#xff0c;我在面对性能问题的一些解决步骤&#xff0c;希望能对大家有所启发。 查找问题原因 我接触的…

MATLAB图卷积神经网络GCN处理分子数据集节点分类研究

全文链接&#xff1a;https://tecdat.cn/?p38570 本文主要探讨了如何利用图卷积网络&#xff08;GCN&#xff09;对图中的节点进行分类。介绍了相关的数据处理、模型构建、训练及测试等环节&#xff0c;通过对分子数据集的操作实践&#xff0c;展示了完整的节点分类流程&#…

uniapp中vuex(全局共享)的应用

一、Vuex概述 1.1 官方解释 Vuex 是一个专为 Vue.js 应用程序开发的状态管理模式。 它采用集中式存储管理 应用的所有组件的状态&#xff0c;并以相应的规则保证状态以一种可预测的方式发生变化 - Vuex 也集成到 Vue 的官方调试工具 devtools extension&#xff0c;提供了诸…

华为云服务器搭建基于LNMP部署wordpress

Ubuntu系统搭建过程目录 一、检查环境1.1 检查是否安装Nginx1.2 检查是否安装Mysql1.3 检查是否安装PHP二、更新软件包以及安装所需要的依赖 三、安装Nginx3.1 下载并解压nginx3.2. 编译安装3.3 启动和停止和测试3.4 创建服务脚本3.5 Nginx目录 四、安装Mysql4.1 安全安装配置4…

ElasticSearch01-概述

零、文章目录 ElasticSearch01-概述 1、Elastic Stack &#xff08;1&#xff09;简介 官网地址&#xff1a;https://www.elastic.co/cn/ELK是一个免费开源的日志分析架构技术栈总称&#xff0c;包含三大基础组件&#xff0c;分别是Elasticsearch、Logstash、Kibana。但实际…

Python学习(二)—— 基础语法(上)

目录 一&#xff0c;表达式和常量和变量 1.1 表达式 1.2 变量 1.3 动态类型特性 1.4 输入 二&#xff0c;运算符 2.1 算术运算符 2.2 关系运算符 2.3 逻辑运算符 2.4 赋值运算符 2.5 练习 三&#xff0c;语句 3.1 条件语句 3.2 while循环 3.3 for循环 四&#…

Idea汉化插件Datagrip汉化插件

汉化插件 ‍ ‍ Chinese (Simplified) Language Pack / 中文语言包 ‍ 插件地址 ‍ 安装完了之后,如果还不是中文的怎么办 ‍ 需要手动设置 Seetings -> Appearance & Behavior -> System Settings -> Language and Region -> Language 修改为 [ Chi…

ansible 自动化运维工具(三)playbook剧本

目录 Playbook的定义 Playbook组成 Playbook命令 Playbook剧本编写格式 基本组件 Handlers处理器 tags标签 Facts组件 Register&#xff1a;注册变量 Debug模块 Playbook循环 With_items循环 With_dict循环&#xff08;字典循环&#xff09; With_nested循环&…

12.2【JAVA EXP4]next.js的各种问题,DEBUG,前端补强,前后端交互,springSecurity ,java 配置,h2数据库

在服务器组件中使用了 useState 这样的 React Hook。useState 只能在客户端组件中使用&#xff0c;而不能在服务器组件中使用。Next.js 的新架构&#xff08;App Router&#xff09;中&#xff0c;默认情况下&#xff0c;页面和布局组件是服务器组件&#xff0c;因此不能直接使…

Cursor重置机器码-解决Too many free trials.

参考文章&#xff1a;如何绕过Cursor的机器绑定限制 前言 在前面这篇文章无限使用Cursor指南中&#xff0c;我提到使用 无限邮箱 或者 删除账号并重新注册 的方法&#xff0c;来无限使用Cursor免费版。但是当在本机登录过3个账号后&#xff0c;就会报这个“Too many free tria…

【PlantUML系列】部署图(七)

一、部署图的组成部分 节点&#xff08;Node&#xff09;&#xff1a;使用node关键字定义一个节点&#xff0c;节点可以是服务器、数据库或其他硬件设备。组件&#xff08;Component&#xff09;&#xff1a;使用component关键字定义一个组件&#xff0c;组件可以是软件模块或服…