浅谈大模型之Agent(下篇)

  • 大模型在Agent中的应用

        随着人工智能技术的不断进步,大模型Agent已经成为了推动智能应用发展的关键力量,这些Agent不仅能够理解人类的语言,还能自主地执行复杂任务,从简单的聊天机器人到能够做出战略决策的企业级助手,大模型Agent正逐步改变着我们的生活和工作方式。本文通过两个实践案例,详细阐述了如何从01利用受限的FAQ文档和LLM能力,搭建一个智能问答Agent,供大家学习参考

实践示例1

示例场景:智能运维专家Agent

本场景价值:

        ①专业性强运维相关的问题回答准确率高

        ②通用性强,无需针对某一类领域问题单独重新训练模型。

具体方案如下:

        数据(知识库)通用的运维FAQ文档数据,如下图所示:

 

        预处理:对上述数据的格式和内容进行了处理,并删除了乱码数据;

        解决方案:RAG+大模型(GPT-3.5)+命令执行脚本

        整个流程框图:

        输入:用户的运维相关问题

        输出:根据问题输出的答案

实际效果如下:

         Agent能回答通用运维知识(下图绿色框)    Agent对于不知道的问题不瞎答(下图蓝色框)

实践示例2

        注:与示例1不同之处在于:优先基于FAQ文档进行智能问答,若用户query与FAQ相关,则利用LLM和RAG能力进行回复;若与FAQ无关,则利用LLM通识能力和联网能力输出答案。

示例场景:智能运维专家Agent(plus版)

本场景价值:

        ①专业性强运维相关的问题回答准确率高

        ②通用性强,无需针对某一类领域问题单独重新训练模型。

        ③灵活性强,能回答更多通用运维知识问题。

具体方案如下:

        数据(知识库)通用的运维FAQ文档数据,如下图所示:

        预处理:对上述数据的格式和内容进行了处理,并删除了乱码数据;

        解决方案:RAG+联网搜索+大模型(GPT-3.5)+命令执行脚本

        整个流程框图:

        输入:用户的运维相关问题

        输出:根据问题输出的答案

实际效果:

        如果数据库和大模型本身都不知道答案,那么此Agent将会去联网搜答案(如下图所示)

  • 未来Agent发展可能面临的挑战

        目前Agent技术还不是完全成熟,发展也面临一些瓶颈。比如:技术方面,LLM模型仍然不够强大,即使是用很强大的GPT4o在AI Agent应用时,仍然面临上下文容量有限,限制了历史信息、详细说明、API 调用上下文和响应;长期规划和有效探索解决方案空间仍然具有挑战性。

        另外,在遇到意外错误时LLM很难调整计划,这使得它们与人类相比(从试错中学习)不太稳健等。其次,就是成本太高了,尤其是多智能体,因为其需要记忆和行动的思考量非常大。还有就是现阶段在很多场景,使用Agent还看不到非常大的提升,或者说能覆盖增加成本的提升。可以说,现阶段大部分Agent技术/平台还都处于研究阶段,现在一些比较固定的工作流程,或者有详细标准SOP的程序,都在封闭环境下进行。

        因此,基于大模型搭建的Agent的能力边界也在不断突破。相信在未来Agent将拥有更强的学习能力,能够通过自我训练不断提高性能,减少对外部监督的需求。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/490062.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Burp与小程序梦中情缘

前言 在日常渗透工作中,有时需要对微信小程序进行抓包渗透,通过抓包,我们可以捕获小程序与服务器之间的通信数据,分析这些数据可以帮助我们发现潜在的安全漏洞,本文通过讲述三个方法在PC端来对小程序抓包渗透 文章目…

RabbitMQ实现消息发送接收——实战篇(路由模式)

本篇博文将带领大家一起学习rabbitMQ如何进行消息发送接收,我也是在写项目的时候边学边写,有不足的地方希望在评论区留下你的建议,我们一起讨论学习呀~ 需求背景 先说一下我的项目需求背景,社区之间可以进行物资借用&#xff0c…

Python的3D可视化库【vedo】2-1 (plotter模块) 绘制器的使用

文章目录 1 相关用语及其关系2 Plotter类的基本使用3 Plotter类具体的初始化设置3.1 全部初始化参数3.2 使用不同的axes vedo是Python实现的一个用于辅助科学研究的3D可视化库。 vedo的plotter模块封装了绘制器类Plotter。 Plotter实例可以用于显示3D图形对象、控制渲染器行为、…

【开源大屏】玩转开源积木BI,从0到1设计一个大屏

积木 BI 重磅推出免费大屏设计器!功能超强大,操作超流畅,体验超酷炫。快来体验一下吧。 让我们一起来看一下如何从0到1设计一个大屏。 一、积木BI大屏介绍 积木BI可视化数据大屏 是一站式数据可视化展示平台,旨在帮助用户快速通…

微信小程序--创建一个日历组件

微信小程序–创建一个日历组件 可以创建一个日历组件&#xff0c;来展示当前月份的日期&#xff0c;并支持切换月份的功能。 一、目录结构 /pages/calendarcalendar.wxmlcalendar.scsscalendar.jscalendar.json二、calendar.wxml <view class"calendar"><…

【Python网络爬虫笔记】11- Xpath精准定位元素

目录 一、Xpath 在 Python 网络爬虫中的作用&#xff08;一&#xff09;精准定位元素&#xff08;二&#xff09;应对动态网页&#xff08;三&#xff09;数据结构化提取 二、Xpath 的常用方法&#xff08;一&#xff09;节点选取&#xff08;二&#xff09;谓词筛选&#xff0…

现代密码学总结(上篇)

现代密码学总结 &#xff08;v.1.0.0版本&#xff09;之后会更新内容 基本说明&#xff1a; ∙ \bullet ∙如果 A A A是随机算法&#xff0c; y ← A ( x ) y\leftarrow A(x) y←A(x)表示输入为 x x x ,通过均匀选择 的随机带运行 A A A,并且将输出赋给 y y y。 ∙ \bullet …

深度学习训练参数之学习率介绍

学习率 1. 什么是学习率 学习率是训练神经网络的重要超参数之一&#xff0c;它代表在每一次迭代中梯度向损失函数最优解移动的步长&#xff0c;通常用 η \eta η 表示。它的大小决定网络学习速度的快慢。在网络训练过程中&#xff0c;模型通过样本数据给出预测值&#xff0…

lc46全排列——回溯

46. 全排列 - 力扣&#xff08;LeetCode&#xff09; 法1&#xff1a;暴力枚举 总共n!种全排列&#xff0c;一一列举出来放入list就行&#xff0c;关键是怎么去枚举呢&#xff1f;那就每次随机取一个&#xff0c;然后删去这个&#xff0c;再从剩下的数组中继续去随机选一个&a…

Docker 安装 Seata2.0.0 (快速配置)

说明&#xff1a;已安装Docker、MySql等&#xff0c;案例使用Mysql数据库模式、Nacos配置信息 1、准备工作 1.1 拉取镜像 [rootTseng ~]# docker pull seataio/seata-server:2.0.0 2.0.0: Pulling from seataio/seata-server 001c52e26ad5: Already exists d9d4b9b6e964: P…

渗透测试-前端验签绕过之SHA256+RSA

本文是高级前端加解密与验签实战的第2篇文章&#xff0c;本系列文章实验靶场为Yakit里自带的Vulinbox靶场&#xff0c;本文讲述的是绕过SHA256RSA签名来爆破登录。 绕过 根据提示可以看出这次签名用了SHA2556和RSA两个技术进行加密。 查看源代码可以看到RSA公钥是通过请求服务…

【JavaEE】网络(2)

一、网络编程套接字 1.1 基础概念 【网络编程】指网络上的主机&#xff0c;通过不同的进程&#xff0c;以编程的方式实现网络通信&#xff1b;当然&#xff0c;我们只要满足进程不同就行&#xff0c;所以即便是同一个主机&#xff0c;只要是不同进程&#xff0c;基于网络来传…

《操作系统 - 清华大学》7 -1:全局页面置换算法:局部页替换算法的问题、工作集模型

文章目录 1. 局部页替换算法的问题2. 全局置换算法的工作原理3. 工作集模式3.1 工作集3.2 工作集的变化 4 常驻集 1. 局部页替换算法的问题 局部页面置换算法 OPT&#xff0c;FIFO&#xff0c;LRU&#xff0c;Clock 等等&#xff0c;这些算法都是针对一个正在运行的程序来讲的…

SpringCloud和Nacos的基础知识和使用

1.什么是SpringCloud ​   什么是微服务&#xff1f; ​   假如我们需要搭建一个网上购物系统&#xff0c;那么我们需要哪些功能呢&#xff1f;商品中心、订单中心和客户中心等。 ​   当业务功能较少时&#xff0c;我们可以把这些功能塞到一个SpringBoot项目中来进行…

LLMs之APE:基于Claude的Prompt Improver的简介、使用方法、案例应用之详细攻略

LLMs之APE&#xff1a;基于Claude的Prompt Improver的简介、使用方法、案例应用之详细攻略 目录 Prompt Improver的简介 0、背景痛点 1、优势 2、实现思路 Prompt优化 示例管理 提示词评估 Prompt Improver的使用方法 1、使用方法 Prompt Improver的案例应用 1、Kap…

CMake简单使用(二)

目录 五、scope 作用域5.1 作用域的类型5.1.1 全局作用域5.1.2 目录作用域5.1.3 函数作用域 六、宏6.1 基本语法6.2 演示代码 七、CMake构建项目7.1 全局变量7.2 写入源码路径7.3 调用子目录cmake脚本7.4 CMakeLists 嵌套(最常用) 八、CMake 与库8.1 CMake生成动静态库8.1.1 动…

ASP.NET |日常开发中读写XML详解

ASP.NET &#xff5c;日常开发中读写XML详解 前言一、XML 概述1.1 定义和结构1.2 应用场景 二、读取 XML 文件2.1 使用XmlDocument类&#xff08;DOM 方式&#xff09;2.2 使用XmlReader类&#xff08;流方式&#xff09; 三、写入 XML 文件3.1 使用XmlDocument类3.2 使用XmlWr…

自动化测试之单元测试框架

单元测试框架 一、单元测试的定义 1&#xff1a;什么是单元测试&#xff1f; 还记不记得我们软件测试学习的时候&#xff0c;按照定义&#xff1a;单元测试就是对单个模块或者是单个函数进行测试&#xff0c;一般是开发做的&#xff0c;按照阶段来分&#xff0c;一般就是单元…

JAVA爬虫获取1688关键词接口

以下是使用Java爬虫获取1688关键词接口的详细步骤和示例代码&#xff1a; 一、获取API接口访问权限 要使用1688关键词接口&#xff0c;首先需要获取API的使用权限&#xff0c;并了解接口规范。以下是获取API接口的详细步骤&#xff1a; 注册账号&#xff1a;在1688平台注册一…

【游戏设计原理】8 - 霍华德的隐匿性游戏设计法则

1. 霍华德的隐匿性游戏设计法则 霍华德的隐匿性游戏设计法则的核心思想是&#xff1a;“秘密的重要性与其表面上的无辜性和完整度成正比”。这意味着&#xff0c;当游戏开始时&#xff0c;设计上越是简洁、无害、直观的元素&#xff0c;隐藏的深层意义和转折就会显得更加震撼和…