回归任务与分类任务应用及评价指标

能源系统中的回归任务与分类任务应用及评价指标

  • 一、回归任务应用
    • 1.1 能源系统中的回归任务应用
      • 1.1.1 能源消耗预测
      • 1.1.2 负荷预测
      • 1.1.3 电池健康状态估计(SOH预测)
      • 1.1.4 太阳能发电量预测
      • 1.1.5 风能发电量预测
    • 1.2 回归任务中的评价指标
      • 1.2.1 RMSE(Root Mean Squared Error)
      • 1.2.1(Mean Absolute Error)
      • 1.2.3 R-squared(决定系数)
  • 二、分类任务应用
    • 2.1 能源系统中的分类任务应用
      • 2.1.1电池故障检测
      • 2.1.2 电网异常检测
      • 2.1.3 电力需求分类
      • 2.1.4 电池寿命分类
    • 2.2 分类任务中的评价指标
      • 2.2.1 Accuracy(准确率)
      • 2.2.2 Precision(精确率)
      • 2.2.3 Recall(召回率)
      • 2.2.4 F1-Score
      • 2.2.5 AUC-ROC(Area Under Curve)
  • 三、 基于有监督学习二者数据集标签的区别
    • 3.1 回归任务的数据集标签
    • 3.2 分类任务的数据集标签
  • 四、 总结

在能源系统中,回归任务与分类任务的应用非常广泛,分别对应着不同类型的模型和预测目标。本文将详细介绍这些任务的具体应用及其适用的评价指标。

一、回归任务应用

回归任务的目标是预测一个连续的数值变量。回归任务通常用于需要精确预测数值的场景,在能源系统中也有很多实际应用。

1.1 能源系统中的回归任务应用

1.1.1 能源消耗预测

  • 目标:预测能源的消耗量,比如电力、热力或者天然气的使用量。
  • 应用示例:根据历史用电数据、天气情况、时间等因素,预测某一地区或设备的未来电力需求。
  • 常用模型:线性回归、支持向量回归(SVR)、神经网络、随机森林回归等。

1.1.2 负荷预测

  • 目标:预测电网的负荷需求,以帮助电网运营商进行负荷调度。
  • 应用示例:预测未来1小时、1天的电网负荷,以优化电网的调度和资源分配。
  • 常用模型:时间序列预测模型(如ARIMA)、长短期记忆(LSTM)网络等。

1.1.3 电池健康状态估计(SOH预测)

  • 目标:预测电池的健康状况,通常是基于电池的充放电数据来估算其健康状态。
  • 应用示例:预测电池的剩余寿命(RUL)和容量衰退情况,以延长电池使用寿命和优化维护。
  • 常用模型:支持向量回归(SVR)、随机森林回归、深度神经网络(DNN)等。

1.1.4 太阳能发电量预测

  • 目标:根据天气、时间、季节等因素预测太阳能电池板的发电量。
  • 应用示例:为太阳能发电系统的优化调度提供支持,预测不同条件下的发电能力。
  • 常用模型:回归模型(如线性回归)、神经网络模型、LSTM等。

1.1.5 风能发电量预测

  • 目标:根据气象数据(风速、风向等)预测风力发电机的发电量。
  • 应用示例:根据不同气象条件预测未来风力发电量,帮助电网更好地调度风电资源。
  • 常用模型:回归分析模型、支持向量回归(SVR)、深度学习模型等。

1.2 回归任务中的评价指标

1.2.1 RMSE(Root Mean Squared Error)

  • 解释:衡量模型预测值与真实值之间的平均平方误差,强调较大的误差。
  • 应用场景:当我们关心较大误差并希望对大的预测偏差给予更高权重时使用RMSE。
  • 公式
    在这里插入图片描述

1.2.1(Mean Absolute Error)

  • 解释:衡量模型预测值与真实值之间的平均绝对误差,适合于处理预测误差均衡的场景。
  • 应用场景:当我们需要了解平均预测误差大小时,MAE是一个合适的选择。
  • 公式
    在这里插入图片描述

1.2.3 R-squared(决定系数)

  • 解释:表示回归模型拟合的好坏,取值范围在0到1之间,越接近1表示模型越能解释数据的变异性。
  • 应用场景:用于评估回归模型的拟合优度,特别是线性回归模型中。

二、分类任务应用

分类任务的目标是将输入数据分为多个类别,通常是离散的标签。在能源系统中,分类任务也有着广泛的应用,尤其是用于诊断、监控和报警等方面。

2.1 能源系统中的分类任务应用

2.1.1电池故障检测

  • 目标:判断电池是否处于健康、衰退或故障状态。
  • 应用示例:根据电池的温度、电压、充电周期等数据,预测电池是否需要更换。
  • 常用模型:决策树、支持向量机(SVM)、k最近邻(KNN)、随机森林等。

2.1.2 电网异常检测

  • 目标:检测电网中是否存在故障或异常,如短路、过载等。
  • 应用示例:实时监测电网的电流、电压等数据,分类预测是否发生了异常事件。
  • 常用模型:决策树、神经网络、随机森林等。

2.1.3 电力需求分类

  • 目标:根据电力需求的特征将其分为不同的类别(如高峰需求、低峰需求等)。
  • 应用示例:通过历史负荷数据,分类预测未来的负荷需求。
  • 常用模型:支持向量机(SVM)、k最近邻(KNN)、随机森林等。

2.1.4 电池寿命分类

  • 目标:根据电池的状态数据(如电压、电流、温度等),判断电池的寿命是否接近结束。
  • 应用示例:根据电池的运行状态,分类预测电池是否即将失效或需要更换。
  • 常用模型:决策树、随机森林、支持向量机(SVM)等。

2.2 分类任务中的评价指标

2.2.1 Accuracy(准确率)

  • 解释:分类正确的样本占总样本的比例。适用于类别分布较为均衡的任务。

  • 公式
    在这里插入图片描述

  • 应用场景:适用于类别均衡的任务,如故障检测、健康状态分类等。

2.2.2 Precision(精确率)

  • 解释:在所有被分类为正类的样本中,实际为正类的比例。

  • 公式
    在这里插入图片描述

  • 应用场景:适用于关注正类识别准确性的任务,如电池故障预测。

2.2.3 Recall(召回率)

  • 解释:在所有实际为正类的样本中,被正确识别为正类的比例。

  • 公式
    在这里插入图片描述

  • 应用场景:适用于关注漏检率低的任务,如电网故障检测。

2.2.4 F1-Score

  • 解释:精确率和召回率的调和平均数,是精确率和召回率的综合评价指标。

  • 公式
    在这里插入图片描述

  • 应用场景:当数据不平衡时,F1-Score可以作为更综合的性能指标。

2.2.5 AUC-ROC(Area Under Curve)

  • 解释:衡量分类模型性能的曲线下的面积,AUC值越接近1,模型越优秀。
  • 应用场景:用于二分类问题中,特别是类别不平衡的任务。

三、 基于有监督学习二者数据集标签的区别


在基于有监督学习的方法中,回归任务和分类任务的数据集标签有着本质的区别,主要体现在标签的类型和预测目标上。下面是详细的说明:

任务类型标签类型标签示例输出目标
回归任务连续数值(实数)450000(房价),1000(电力消耗)预测一个具体的数值
分类任务离散类别(类别标签)“健康”/“故障”,“正常”/“过载”预测属于某一类的标签

回归任务的标签是连续的实数值,而分类任务的标签是离散的类别,并且分类任务中的标签通常是没有大小关系的。

3.1 回归任务的数据集标签

标签的类型:

  • 回归任务的标签是连续的数值型变量。
  • 标签可以是任何实数值,代表某种度量,如温度、电力消耗、价格等。

特点:

  • 回归任务预测的是一个数值,通常需要根据输入数据(特征)来估计某个连续的数值输出。
  • 标签之间的大小和距离是有实际意义的。例如,在预测温度时,20°C与30°C之间的差异是有实际意义的。
  • 回归问题的目标是最小化误差,使得预测的数值尽可能接近真实的连续值。

常见应用:

  • 电力负荷预测:预测未来某一时刻的电力负荷。
  • 股票价格预测:预测未来某一时刻的股票价格。
  • 电池剩余寿命预测(RUL):预测电池的剩余使用寿命。

标签示例:

  • 预测房价:标签可能是“450000”(房价,单位:美元)。
  • 预测电量消耗:标签可能是“1000”kWh(电力消耗量)。
  • 预测温度:标签可能是“25”°C(温度值)。

3.2 分类任务的数据集标签

标签的类型:

  • 分类任务的标签是离散的类别变量。
  • 标签表示的是数据属于某一类的类别,通常是标签的不同类别之间没有顺序关系。

特点:

  • 分类任务的目标是根据输入特征将数据分配到预定的类别中。
  • 标签之间的大小和顺序通常没有实际意义。对于二分类任务,标签通常是两个类别(如“1”和“0”);对于多分类任务,标签可以是多个类别中的一个(如“猫”、“狗”、“鸟”等)。
  • 分类任务的目标是通过模型学习输入与类别之间的映射关系,从而进行分类预测。

常见应用:

  • 电池健康状态检测:判断电池是否处于健康、衰退或故障状态。
  • 电力需求分类:根据历史数据将电力需求划分为不同的负荷类型,如“高峰负荷”和“低谷负荷”。
  • 电网故障检测:判断电网是否处于正常运行状态,如“正常”和“异常”。

标签示例:

  • 预测电池健康状态:标签可能是“健康”或“故障”。
  • 预测电网状态:标签可能是“正常”或“过载”。
  • 预测水果种类:标签可能是“苹果”、“香蕉”或“橙子”。

四、 总结

在能源系统中,回归任务分类任务分别应用于不同的预测目标。回归任务常用于预测连续的数值(如电池健康状态、负荷需求等),其评价指标通常包括RMSEMAER-squared等。而分类任务则用于对离散类别进行分类(如电池故障检测、电网异常识别等),其评价指标包括AccuracyPrecisionRecallF1-Score等。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/490717.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

嵌入式学习(18)-stm32F407串口接收空闲中断+DMA

一、概述 在一些一次性接收大批量数据的引用场合,如果使用接收中断会频繁的进入接收中断影响代码的运行效率。为了解决这个问题可以使用串口的空闲中断DMA实现。 二、应用 在网上招了一些例程在STM32F407的平台上都没有跑通会出现各种异常,主要原因还…

Docker的镜像

目录 1. 镜像是什么??2. 镜像命令详解2.1 镜像命令清单2.2 docker rmi命令2.3 docker save命令2.4 docker load命令2.5 docker history命令2.6 docker import命令2.7 docker image prune命令2.8 docker build命令 3. 镜像的操作4. 离线迁移镜像5. 镜像存…

Git版本控制工具--介绍及安装

1.Git的简介 Git是目前世界上最先进的的分布式控制系统(没有之一)。 很多人都知道,Linus在1991年创建了开源的Linux,从此,Linux系统不断发展,已经成为最大的服务器系统软件了。 Linus虽然创建了Linux&…

【OJ题解】面试题三步问题

个人主页: 起名字真南的CSDN博客 个人专栏: 【数据结构初阶】 📘 基础数据结构【C语言】 💻 C语言编程技巧【C】 🚀 进阶C【OJ题解】 📝 题解精讲 目录 **题目链接****解题思路****1. 问题分析****2. 递归思路****3. 优化方案&a…

CTFHub解题笔记之Web信息泄露篇:11.HG泄露

1.题目描述 题目位置 网页显示 2.解题思路 ‌HG泄露是指Mercurial版本控制系统中的敏感信息被未经授权的个人或系统访问的情况。Mercurial(翻译过来是水银,所以通常简称为HG)是一种分布式版本控制系统,用于管理软件源代码或其…

linux网络编程 | c | 多线程并发服务器实现

多线程并发服务器 基于该视频完成 12-多线程并发服务器分析_哔哩哔哩_bilibili 通过的是非阻塞忙轮询的方式实现的 和阻塞等待的区别就是,阻塞是真的阻塞了,而这个方式是一直在问有没有请求有没有请求 linux | c | 多进程并发服务器实现-CSDN博客 …

R语言——缺失值处理

目录 缺失数据 1 R中的缺失值 2查看缺失值is.na() 3 去除缺失值 1 R中的缺失值 在R中,NA代表缺失值,NA是不可用(可能是0,可能是其他值,NA是未知的),notavailable的简称,用来存储…

快速上手:利用 FFmpeg 合并音频文件的实用教程

FFmpeg 是一个强大的多媒体处理工具,能够轻松地对音频、视频进行编辑和转换。本文将介绍如何使用 FFmpeg 来合并(拼接)多个音频文件为一个单一文件。无论您是想要创建播客、音乐混音还是其他任何形式的音频项目,这都是一个非常实用…

常见软件设计模式介绍:三层架构、MVC、SSM、EDD、DDD

三层架构(View Service Dao) 三层架构是指:视图层 view(表现层),服务层 service(业务逻辑层),持久层 Dao(数据访问层) 表现层:直接跟前…

重庆轨道交通2号线建桥地铁站自动化监测

1. 项目概述 本次项目位于重庆市轨道交通2号线中大渡口区的建桥站,轨道交通2号线是重庆市首条开通运营的城市轨道交通,也是中国首条开通运营的跨座式单轨线路。建桥站为轨道交通2号线延长线中的一站,本站为高架侧式,临近恒大麓山…

一、LRU缓存

LRU缓存 1.LRU缓存介绍2.LRU缓存实现3.LRU缓存总结3.1 LRU 缓存的应用3.2 LRU 缓存的优缺点 1.LRU缓存介绍 LRU是Least Recently Used 的缩写,意为“最近最少使用”。它是一种常见的缓存淘汰策略,用于在缓存容量有限时,决定哪些数据需要被删…

噪杂环境(房车改装市场)离线语音通断器模块

一直在坚持,却很难有机会上热门,在现在这个以流量为导向的时代,貌似很难靠所谓的坚守和热爱把产品成功的推向市场了。目前的客户仍然是以老客户为主,应用场景主要是房车改装,根据九客户的需求定制化一些模块。因为没有…

Rust之抽空学习系列(四)—— 编程通用概念(下)

Rust之抽空学习系列(四)—— 编程通用概念(下) 1、函数 函数用来对功能逻辑进行封装,能够增强复用、提高代码的可读 以下是函数的主要组成部分: 名称参数返回类型函数体 1.1、函数名称 在Rust中&…

深入了解IPv6——光猫相关设定:DNS来源、DHCPv6服务、前缀来源等

光猫IPv6设置后的效果对比图: 修改前: 修改后: 一、DNS来源 1. 网络连接 来源: 从上游网络(如运营商)获取 IPv6 DNS 信息,通过 PPPoE 或 DHCPv6 下发。 特点: DNS 服务器地址直…

【Vue3】前端使用 FFmpeg.wasm 完成用户视频录制,并对视频进行压缩处理

强烈推荐这篇博客!非常全面的一篇文章,本文是对该博客的简要概括和补充,在不同技术栈中提供一种可行思路,可先阅读该篇文章再阅读本篇: FFmpeg——在Vue项目中使用FFmpeg(安装、配置、使用、SharedArrayBu…

聊一下前端常见的图片格式

1. JPEG (JPG) 概述:是一种有损压缩的图像格式,它通过去除图像中一些人类视觉不易察觉的细节来减小文件大小。它支持数百万种颜色,能够很好地呈现照片等色彩丰富的图像内容。优点: 压缩率高:可以在保持相对较好的图像…

【数据结构——内排序】快速排序(头歌实践教学平台习题)【合集】

目录😋 任务描述 测试说明 我的通关代码: 测试结果: 任务描述 本关任务:实现快速排序算法。 测试说明 平台会对你编写的代码进行测试: 测试输入示例: 10 6 8 7 9 0 1 3 2 4 5 (说明:第一行是元素个数&a…

企业级包管理器之 monorepomultirepo (8)

在企业级项目开发中,面对多个项目的管理,monorepo 和 multirepo 是两种常见的代码管理方案,它们各有特点与优劣,下面我们来详细了解一下。 一、基本概念 monorepo:“mono”在英语中有“单一的、单独的”之意&#xf…

【electron】electron forge + vite + vue + electron-release-server 自动更新客户端

基本信息 electron forge vue页面(中文):https://forge.electron.js.cn/guides/framework-integration/vue-3 electron forge vue页面(英文,中文版下面的tab无法点击):https://www.electronfor…

后端-带有多个动态查询条件的分页查询

page和pagesize是分页插件所带的参数,其他三个是模糊查询的条件字段 因为是路径动态?拼接 的形式,所以不需要注解requestbody,先封装到pageresult中,再把pageresult封装到result中。 后端给前端的返回值封装到Vo中