#RAG|NLP|Jieba|PDF2WORD# pdf转word-换行问题

文档在生成PDF时,文宁都发生了什么。本文讲解了配置对象、resources对象和content对象的作用,以及字体、宇号、坐标、文本摆放等过程。同时,还解释了为什么PDF转word或转文字都是一行一行的以及为什么页眉页脚的问题会加大识别难度。最后提到了文本的编码和PDF中缺少文档结构标记的问题。PDF转word更像是一种逆向工程。

第三方库pdf转word的痛点-格式不保留

本文着力解决换行问题:

  1. 源文本正常输入,pdf解析第三方库识别出来多余换行符

    原文:“你好”
    识别:“你\n好”
  2. 源文本出现多个换行符,pdf解析第三方库识别出一个换行符

    原文:“你好\n\n\n\n\n\n我是向日葵花子”
    识别:“你好\n我是向日葵花子”

word 转 pdf 经历了什么

文本转换为PDF时,记录的信息

包括:

  1. 位置和大小信息:记录每个文本在页面上的位置和大小。
  2. 字体信息:记录文本所使用的字体名称、大小和样式。
  3. 颜色信息:记录文本的颜色。
  4. 行间距和段落间距:记录文本之间的行间距和段落之间的间距。
  5. 文本属性:记录文本的对齐方式、装饰等其他属性。
  6. 超链接和书签:记录文本中的超链接和书签信息,以实现交互功能。
    这些信息的记录旨在确保在PDF中正确呈现文本内容,并保持文档的原始格式和布局。

pdf文本信息

pdf文本是由文本空间组成的,其中包含:
文本矩阵,定义下一个字形的当前转换。它由文本定位和显示运算符的文本改变。
文本行矩阵,它是当前行开头的文本矩阵的状态。因此,通过使用操作员移动到下一行,可以垂直对齐文本行,而无需手动跟踪行的开始位置。
这些矩阵不会从文本部分持续到文本部分,而是在每个文本部分的开头重置为单位矩阵。 结合字体大小,水平缩放和文本上升,这两个矩阵定义了从文本空间到用户空间的转换。

如何获得pdf信息

大段处理

可以在调用第三方库的过程中加一些小算法,我这里给一点点提示

  1. 读取pdf基本信息
  2. 逐行获取pdf信息
  3. 根据每行的行宽来判断是不是多输出了换行符
  4. 每行即使没有文字只有换行符也要加入到获取的信息中
    这一步可以完成百分之八十的换行格式还原。

获取每行信息的代码:

    with pdfplumber.open(file_path) as pdf:for p in pdf.pages:# print(p.bbox)page_lines = p.extract_text_lines()

接下来就要去分析文档每行的信息,然后利用坐标去处理了,大家可以自己思考下代码怎么写。
在这里插入图片描述

页眉页脚、大小标题

识别处理思路和大段处理一致

小段处理

在这里插入图片描述

通过坐标处理不了两行的小段,特别是开头没有缩进的unstructured文本,这里我们需要加上其他算法。
我使用的是nlp的文本分析进行兜底。
处理流程:

  1. 分析上下文关系优化结构算法: 在获取到文本内容后,可以编写一个分析句子上下文关系的算法来处理文本,对于出现问题的地方进行修正。
    主要用到:
    词性标注(Part-of-Speech Tagging): 词性标注是将句子中的每个词汇标记为其对应的词性(如名词、动词、形容词等)的过程。通过词性标注可以识别句子中各个词汇的语法角色,从而帮助理解句子的结构和含义。
    句法分析(Syntax Parsing): 句法分析是分析句子中各个词汇之间的语法关系,如主谓关系、动宾关系等。通过句法分析可以构建句子的语法树,从而帮助理解句子的结构和语义。
  2. 合并文本: 根据分析结果,将需要合并的部分合并到一起。
  3. 输出结果:输出处理后的文本。
    这一步可以完成到90%的换行格式还原,通过不断优化句法分析的规则,可以逐渐接近100%。

清洗文本

nlp句法分析是分析句子中各个词汇之间的语法关系,因此,像emoji或者其他特殊、对于计算机语义处理无意义的符号保留下来必定对结果产生很大影响,最终合并的效果大打折扣,所以我们需要先对文本进行一个清洗,去掉无意义的符号。
由于我的文档只涉及到emoji这种特殊符号,所以我只进行了emoji的清洗

def remove_emoji(text):emoji_pattern = re.compile("["u"\U0001F600-\U0001F64F"  # emoticonsu"\U0001F300-\U0001F5FF"  # symbols & pictographsu"\U0001F680-\U0001F6FF"  # transport & map symbolsu"\U0001F1E0-\U0001F1FF"  # flags (iOS)u"\U00002600-\U000027BF"  # miscellaneous symbolsu"\U0001F300-\U0001FAD6"  # additional emoticons"]+", flags=re.UNICODE)return emoji_pattern.sub(r'', text)

句子拆分

按照逗号拆分就可以,然后找到带有换行符号的句子进行进一步的词性标注
注意只取带有换行符的小句,这样可以提高工作效率减少无意义的算法调用

使用split函数即可

词性标注

在这里插入图片描述

为了分析句子语法关系、上下文关系,我们必须先进行词性标注,构建语法树,然后再进行句子分析
这里我直接用的中文nlp库jieba,其他好用的库可以直接替换使用,如果是英文词性标注可以使用ntlk,ntlk也有中文词性标注,但是我中文标注我更喜欢用jieba
jieba的jieba词性标注表我也给大家整理好了
词性标注的代码:

import jieba.posseg as psg
# 分词和词性标注
seg = psg.cut(sentence)
# 定义语法规则
result_list = []
verbs = []
for word, pos in seg:# 对句法树进行处理,这里只是简单打印出来,你可以根据需要处理print("句法树:", word, pos)word_info = {'word': word, 'pos': pos}# 将字典添加到列表中result_list.append(word_info)if pos == 'v':verbs.append(word_info)
verbs = [word for word, pos in seg if pos == 'v']

分析上下文关系

词性标注结束后,我们就可以根据语法树分析上下文关系了

merged_sentences = []
for i, sentence in enumerate(sentences):if i > 0:# 分析上下文关系verbs_prev, seg_prev = analyze_context(sentences[i - 1])verbs_curr, seg_curr = analyze_context(sentence)x = list(seg_prev)# 如果前一个句子或当前句子至少有一个含有动词,则进行合并if (len(verbs_prev) == 1 and len(verbs_curr) == 0) or (len(verbs_prev) == 0 and len(verbs_curr) == 1):merged_sentences[-1] += sentence# 如果上一句的最后一个词和下一句的第一个词都是动词,则进行合并elif seg_prev[-1] and seg_curr[0] and seg_prev[-1]["pos"] in ['r', 'v'] and seg_curr[0]["pos"] == 'v':merged_sentences[-1] += sentence# 代词和指示词:如果后一个句子以代词或指示词开头,这可能表明它是对前一个句子的补充。elif seg_curr[0]["pos"] in ['r', 'z', 'c'] or seg_curr[0]["word"] in ['这', '那', '其', ...]:merged_sentences[-1] += sentence# 时间+nelif seg_curr[0]["pos"] in ['n'] or seg_prev[0]["pos"] in ['t', 'm', ...]:merged_sentences[-1] += sentence# 句号和分号:虽然句号和分号通常表示句子的结束,但如果它们后面紧跟的是小写字母或标点符号,可能意味着这是同一句话的一部分。elif seg_prev[-1]["word"] in ['。', ';'] and not seg_curr[0]["word"].istitle():merged_sentences[-1] += sentence# 如果后一个句子的第一个词是“的”并且前一个句子的最后一个词是动词,则进行合并elif seg_curr[0] and seg_curr[0]["pos"] == 'm' and seg_prev[-1] and seg_prev[-1]["pos"] == 'v':merged_sentences[-1] += sentences[i]# 如果后一个句子的第一个词是“的”并且前一个句子的最后一个词是动词,则进行合并elif seg_curr[0] and seg_curr[0]["pos"] == 'p' and seg_prev[-1] and seg_prev[-1]["pos"] == 'd':merged_sentences[-1] += sentences[i]# 3. 如果上一句的最后一个词是标点符号,且下一句的第一个词不是句首发语词,则进行合并elif seg_prev[-1]["pos"] == 'x' and seg_curr[0]["pos"] not in ['c', 'r', 'u', 'p', 'm', 'e']:merged_sentences[-1] += sentence# 4. 如果上一句的最后一个词是名词或动词,且下一句以时间状语或条件状语开头,则进行合并elif (seg_prev[-1]["pos"] in {'n', 'vg', 'v'}) and (seg_curr[0]["pos"] in {'f', 'c'}):merged_sentences[-1] += sentenceelse:merged_sentences.append(sentence)else:merged_sentences.append(sentence)

我在判断规则的同时,进行了是否合并的判断,这样 我们就得到了合并后的文本merged_sentences
在这里插入图片描述

参考文献

https://www.bilibili.com/video/BV1Vi4y1C71M/?spm_id_from=333.788&vd_source=8c9777cd5733f7f447f766cd5105041b

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/249104.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何输入手机验证码才能查询?确保本人查询!

易查分的手机验证码功能可以通过预留手机号,让用户查询时输入验证码,确保是本人进行查询。本次就来介绍如何开启【手机验证码功能】。 📌使用教程 01准备电子表格 在准备表格时,建立查询时,查询条件必须设置两个或者两…

ElementUI 组件:Container 布局容器实例

ElementUI安装与使用指南 Container 布局容器 点击下载learnelementuispringboot项目源码 效果图 项目里el-container-example.vue代码 <script> export default {name: el_container_example,data() {const item {date: 2024-01-31,name: 国龙,address: 上海市某区…

Mac 终端可以使用yarn,但是vscode里面报错segmentation fault

Mac 终端可以使用yarn 但是vscode里面报错segmentation fault 查阅官网https://www.yarnpkg.cn/getting-started/install 在vscode运行corepack enable即可解决该问题

网络异常案例五_SYN被丢弃

问题现象 公司同事使用的时候&#xff0c;反馈系统不稳定&#xff0c;访问的时候&#xff0c;有时候会出现白屏&#xff08;连接超时&#xff09;&#xff0c;或者系统页面点击没有响应&#xff0c;过一会之后刷新系统又可以正常展示了。之前未收到过类似反馈&#xff0c;一直…

20240131在WIN10下配置whisper

20240131在WIN10下配置whisper 2024/1/31 18:25 首先你要有一张NVIDIA的显卡&#xff0c;比如我用的PDD拼多多的二手GTX1080显卡。【并且极其可能是矿卡&#xff01;】800&#xffe5; 2、请正确安装好NVIDIA最新的545版本的驱动程序和CUDA。 2、安装Torch 3、配置whisper http…

2024年数学建模美赛 分析与编程

2024年数学建模美赛 分析与编程 1、本专栏将在2024年美赛题目公布后&#xff0c;进行深入分析&#xff0c;建议收藏&#xff1b; 2、本专栏对2023年赛题&#xff0c;其它题目分析详见专题讨论&#xff1b; 2023年数学建模美赛A题&#xff08;A drought stricken plant communi…

k8s Sidecar filebeat 收集容器中的trace日志和app日志

目录 一、背景 二、设计 三、具体实现 Filebeat配置 K8S SideCar yaml Logstash配置 一、背景 将容器中服务的trace日志和应用日志收集到KAFKA&#xff0c;需要注意的是 trace 日志和app 日志需要存放在同一个KAFKA两个不同的topic中。分别为APP_TOPIC和TRACE_TOPIC 二、…

【笔记】React-Native跟Android交互--简单示例

/** * 使用命令 npx react-nativelatest init DemoRN创建项目 * * "react": "18.2.0", * "react-native": "0.73.2" * * 官网有详细教程&#xff1a;https://reactnative.dev/docs/native-modules-android */ 一、RN invoke androi…

Java 的 Map 與 List

通過重新new 一個ArrayList 轉化 resTask.setList(new ArrayList<Group>(custMap.values())); 无序的Map List 有序的数据放到Map&#xff0c;就变成无序。 List排序 按照code 的字母进行排序A-Z resTask.getListData().sort(Comparator.comparing(Gmer::getCode));…

Hadoop3.x基础(2)- HDFS

来源&#xff1a;B站尚硅谷 目录 HDFS概述HDFS产出背景及定义HDFS优缺点HDFS组成架构HDFS文件块大小&#xff08;面试重点&#xff09; HDFS的Shell操作&#xff08;开发重点&#xff09;基本语法命令大全常用命令实操准备工作上传下载HDFS直接操作 HDFS的API操作HDFS的API案例…

Vue.js 学习14 集成H265web.js播放器实现webpack自动化构建

Vue.js 学习14 集成H265web.js播放器实现webpack自动化构建 一、项目说明1. H265web.js 简介2. 准备环境 二、项目配置1. 下载 H265web.js2. 在vue项目里引入 H265web3. 设置 vue.config.js 三、代码引用1. 参照官方demo &#xff0c; 创建 executor.js2. 在 vue 页面里引用htm…

Wireshark网络协议分析 - Wireshark速览

在我的博客阅读本文 文章目录 1. 版本与平台2. 快速上手2.1. 选择网络接口进行捕获&#xff08;Capture&#xff09;2.2. 以Ping命令为例进行抓包分析2.3. 设置合适的过滤表达式2.4. 数据包详情2.5. TCP/IP 四层模型 3. 参考资料 1. 版本与平台 Wireshark是一个开源的网络数据…

Linux——安装MySQL

1、安装mysql8.0.35 1.1、安装步骤 1.更新包列表&#xff0c;首先&#xff0c;确保您的系统已更新到最新状态。运行以下命令来更新包列表和安装最新的软件包&#xff1a; sudo apt update sudo apt upgrade2.安装MySQL服务器&#xff1a;运行以下命令来安装MySQL服务器&…

【制作100个unity游戏之23】实现类似七日杀、森林一样的生存游戏5(附项目源码)

本节最终效果演示 文章目录 本节最终效果演示系列目录前言修改鼠标光标和中心提示图鼠标光标素材修改默认鼠标光标修改中心提示图 拾取提示弹窗简单绘制UI拾取弹窗功能 源码完结 系列目录 前言 欢迎来到【制作100个Unity游戏】系列&#xff01;本系列将引导您一步步学习如何使…

ASTORS国土安全奖:ManageEngine AD360荣获银奖

美国安全今日&#xff08;AST&#xff09;的年度“ASTORS”国土安全奖计划是一个备受瞩目的活动&#xff0c;致力于突显国土安全领域的创新与进步。这一奖项旨在表彰在保护国家免受安全威胁方面做出卓越贡献的个人和组织。该计划汇聚了执法、公共安全和行业领袖&#xff0c;不仅…

能耗在线监测系统在节能管理中的应用

上海安科瑞电气股份有限公司 胡冠楠 咨询家&#xff1a;“Acrelhgn”&#xff0c;了解更多产品资讯 摘要&#xff1a;开展能耗在线监测系统建设&#xff0c;对加强政府部门和企业节能管理中的应用前景&#xff0c;分析系统在能源消费预测分析、能效对标、节能监察、能源精细化…

单片机驱动多个ds18b20

目录 1设计内容 2ds18b20介绍 2.1传感器引脚及原理图 2.2寄存器配置 3程序实现 3.1配置初始化 3.2配置寄存器 3.3ROM读取 3.4温度读取 1设计内容 通过51单片机&#xff0c;读取总线上挂载的多个ds18b20的温度信息。 如下图&#xff0c;成功读取到3路温度数据。 2ds18…

路由备份聚合排错

目录 实验拓扑图 实验要求 实验排错 故障一 故障现象 故障分析 故障解决 故障二 故障现象 故障分析 故障解决 故障三 故障现象 故障分析 故障解决 故障四 故障现象 故障分析 故障解决 故障五 故障现象 故障分析 故障解决 实验拓扑图 实验要求 按照图示配…

软件工程知识梳理4-详细设计

详细设计阶段的根本目标是确定应该怎样具体地实现所要求的系统&#xff0c;也就是说.经过这个阶段的设计工作.应该得出对目标系统的精确描述.从而在编码阶段可以把这个描述直接翻译成用某种程序设计语言书写的程序。 详细设计的的目标不仅仅是逻辑上正确地实现每个模块地功能&a…

使用最大边界相关算法处理文章自动摘要

一、需求背景 对于博客或者文章来说&#xff0c;摘要是普遍性的需求。但是我们不可能让作者自己手动填写摘要或者直接暴力截取文章的部分段落作为摘要&#xff0c;这样既不符合逻辑又不具有代表性&#xff0c;那么&#xff0c;是否有相关的算法或者数学理论能够完成这个需求呢&…