【OpenCV计算机视觉】图像处理——平滑

本篇文章记录我学习【OpenCV】图像处理中关于“平滑”的知识点,希望我的分享对你有所帮助。

目录

一、什么是平滑处理

1、平滑的目的是什么? 

2、常见的图像噪声 

(1)椒盐噪声

​编辑(2) 高斯噪声

(3) 泊松噪声

(4) 斑点噪声

 二、图像平滑处理的方法

1、均值滤波

 2、高斯滤波

(1)高斯函数 

(2)高斯滤波的卷积核 

(3)高斯滤波的操作过程

 3、中值滤波

(1)中值滤波的原理 

(2)中值滤波的步骤

​编辑(3)中值滤波的优缺点 

 4、双边滤波

(1)双边滤波的原理 

(2)双边滤波的数学公式 

 (3)双边滤波的步骤

(4)双边滤波的优缺点 


一、什么是平滑处理

在图像处理中,"平滑"是指减少图像中噪声或细节的过程,目的是让图像看起来更加平滑、柔和,或是突出主要特征,同时抑制不必要的细节。平滑操作常常用于噪声去除、边缘检测之前的预处理等任务。

因此,你只需明白图像处理中“平滑”操作就是一种“预处理”的手段,目的是为后续的处理工作做铺垫。 

1、平滑的目的是什么? 

  • 噪声去除图像在采集过程中可能会受到各种噪声的影响,平滑操作能够有效减小噪声对图像质量的影响。
  • 特征提取通过平滑去除细节,有助于在后续处理(如边缘检测、形态学处理等)中更好地提取关键特征。
  • 图像压缩某些压缩算法依赖于图像的平滑化,以降低数据冗余。

2、常见的图像噪声 

在介绍平滑处理的方法时,我想想介绍一下常见的图像噪声。

图像噪声是指在图像中出现的无意义的、随机的像素值,通常由传感器、信号处理或环境干扰等因素引起。这些噪声会破坏图像的质量,使得图像显得模糊、杂乱、失真。

(1)椒盐噪声

这种噪声在图像中表现为一些亮白色或黑色的随机小点,通常是由数据传输错误或压缩过程中的问题引起的。

椒盐噪声(Salt-and-pepperNoise)也称为脉冲噪声,是一种随机出现的白点或黑点,具体表现为亮的区域有黑色像素,或是暗的区域有白色像素,又或是两者皆有。

(2) 高斯噪声

是一种呈现正态分布的噪声,通常表现为图像中的像素值出现细微的随机波动。高斯噪声在许多实际场景中都很常见,尤其是在低光照条件下。

高斯噪声(GaussNoise)是指概率密度函数服从高斯分布(正态分布)的一类噪声。除了常用抑制噪声的方法外,常采用数理统计方法对高斯噪声进行抑制

(3) 泊松噪声

在低光照条件下,图像的噪声可能呈现泊松分布,这种噪声通常表现为图像中某些区域的像素值有较大的波动。

(4) 斑点噪声

常见于雷达成像或医学成像中,它的特点是图像局部区域的像素值变化比较剧烈,通常是由成像设备的工作原理或测量误差引起的。

 二、图像平滑处理的方法

1、均值滤波

  • 原理:将每个像素值替换为其邻域内像素的平均值。
  • 效果:均值滤波能够有效去除噪声,但会导致图像模糊,特别是当噪声较多时。
  • 实现:使用一个固定大小的卷积核(如 3x3、5x5)对图像进行卷积操作。

均值滤波(MeanFiltering)就是对图像的所有像素点进行取均值,即以一个方形区域为单位,将该区域的中心像素点赋值为区域内所有像素点的平均值。

​​​​​​​

 数学表达式:

设图像为二维矩阵,图像的像素值表示为I(x,y),其中xy是图像的横纵坐标。

  • 均值滤波器通常采用一个大小为k*k的卷积核,表示为 K
  • 假设滤波后的像素值\dot{I}(x,y) 是当前像素周围k*k区域的平均值,可以通过卷积操作来实现:

其中(x,y)是当前像素点的位置,k*k是滤波器的尺寸。

  • 在这个过程中,卷积核的每个元素都等于\frac{1}{k^{2}},即均值滤波器是一个均匀的滤波器。

均值滤波的步骤: 

  1. 选择滤波器大小:选择一个 k*k的滤波器大小(通常为奇数,例如 3×33×3, 5×55×5, 7×77×7 等),这个大小决定了每个像素周围的邻域范围。
  2. 遍历图像:遍历图像中的每一个像素点,对于每个像素点,计算其周围邻域内像素的均值。
  3. 更新像素值:将该邻域的均值赋给当前像素点,完成平滑处理。

在Python中,可以通过使用OpenCV库来实现均值滤波。 

import cv2
import numpy as np# 读取图像
image = cv2.imread('image.jpg')# 使用3x3的均值滤波器
result = cv2.blur(image, (3, 3))# 显示原图和处理后的图像
cv2.imshow('Original Image', image)
cv2.imshow('Filtered Image', result)# 等待按键关闭窗口
cv2.waitKey(0)
cv2.destroyAllWindows()

此代码利用OpenCV中的cv2.blur()函数应用3x3大小的均值滤波器对图像进行平滑处理。 

均值滤波是一种简单而有效的图像去噪方法,适用于去除随机噪声。然而,由于它会模糊图像细节,尤其是边缘,因此在需要保留细节的场景下,可能需要使用更复杂的滤波算法(如高斯滤波或中值滤波)。 

 2、高斯滤波

  • 原理:利用高斯分布对图像进行加权平均处理,权重较高的像素对结果的贡献较大,权重较低的像素对结果的影响较小。
  • 效果:高斯滤波比均值滤波保留更多的图像结构,减少了噪声的同时,边缘损失较少,平滑效果较为自然。
  • 实现:使用高斯函数生成卷积核,然后用该卷积核对图像进行卷积操作。

高斯滤波(Gaussian Filtering)是一种常见的图像处理方法,主要用于去除图像中的噪声或平滑图像。它通过卷积运算与高斯函数(正态分布函数)相结合,对图像进行模糊处理。高斯滤波的核心思想是:使用一个高斯核(即一个矩阵)与图像进行卷积,从而在图像上应用模糊效果,减弱细节并减少噪声。

(1)高斯函数 

高斯滤波的基础是高斯函数,它的公式如下:

  • G(x,y)是高斯分布的值,表示在点(x,y)处的权重。
  • \sigma是高斯函数的标准差,控制高斯分布的宽度。标准差越大,平滑效果越强;标准差越小,平滑效果越弱。
  • (x,y)是相对于高斯滤波器中心点的坐标。

这个高斯函数呈现钟形曲线,值在中心最大,随着远离中心的距离增大,值逐渐减小。因此,高斯滤波会根据距离中心的远近对周围像素赋予不同的权重,离中心越远的像素权重越小。

(2)高斯滤波的卷积核 

高斯滤波通常通过一个卷积核(或称为滤波器)来实现,该核是基于二维高斯函数构造的。卷积核的大小决定了滤波的效果,通常为奇数尺寸(如3×3、5×5、7×7等)

 例如,一个简单的3×3高斯核可能如下所示(假设\sigma =1):

这个矩阵表示了高斯滤波器的权重。每个像素的值都被乘以相应的位置权重,然后加总,得到新的像素值。高斯滤波器对图像进行卷积时,权重较大的像素会对中心像素的影响更大,而权重较小的像素则对其影响较小。

(3)高斯滤波的操作过程

高斯滤波的基本操作过程可以分为以下几步:

  1. 选择卷积核大小和标准差 \sigma:选择一个适合的高斯核,并确定标准差\sigma来控制平滑程度。

  2. 对每个像素进行卷积操作:对图像中的每个像素位置,使用高斯核与其周围的像素进行卷积运算。卷积的计算方式是:将高斯核与图像像素值逐点相乘,得到加权和。

  3. 更新像素值:将卷积运算得到的加权和作为该像素的新值。

  4. 处理边界问题:在边缘或角落处,由于周围像素不足以填满整个卷积核,可以采用零填充、镜像填充等方法来处理。

 在Python中,可以通过使用OpenCV库来实现高斯滤波。

import cv2# 读取图像
image = cv2.imread('image.jpg')# 使用高斯滤波进行图像平滑,(5, 5)为核大小,0为自动计算标准差
blurred_image = cv2.GaussianBlur(image, (5, 5), 0)# 显示原图与处理后的图像
cv2.imshow('Original Image', image)
cv2.imshow('Gaussian Blurred Image', blurred_image)# 等待按键关闭窗口
cv2.waitKey(0)
cv2.destroyAllWindows()

 3、中值滤波

  • 原理:将每个像素值替换为其邻域内所有像素值的中位数。
  • 效果:中值滤波对于去除椒盐噪声(即黑白像素的随机分布)非常有效,比均值滤波更能保留边缘信息。
  • 实现:遍历图像,每次将一个窗口内的像素值排序,取其中间的值作为当前像素的值。

中值滤波(Median Filtering)是一种常用的图像平滑和去噪方法,尤其在处理椒盐噪声时表现优异。它的基本思想是:对于图像中的每个像素,将该像素的邻域内像素值按大小排序,然后用排序后的中位数值替代当前像素的值。中值滤波不仅能有效去除噪声,还能较好地保留图像的边缘特征。

(1)中值滤波的原理 

与均值滤波不同,中值滤波并不是取邻域像素的平均值,而是选择邻域内像素值的中位数。中位数是指一组数据按大小排序后,位于中间位置的值。对于一个大小为k*k的邻域窗口,将该邻域的像素值排序,并取中间的值作为当前像素的新值。

例如,对于一个 3×3 的邻域窗口:

[ 7, 2, 3 ]
[ 5, 8, 1 ]
[ 4, 9, 6 ]

排序后的像素值为:

[ 1, 2, 3, 4, 5, 6, 7, 8, 9 ]

中位数是排序后的中间值,位置为第五个元素,即 5。因此,这个窗口中心的像素值将被替换为 5

(2)中值滤波的步骤

  1. 选择窗口大小:通常选择一个k*k的邻域窗口(例如 3×3, 5×5 等)。窗口大小为奇数,确保有一个明确的中心点。
  2. 遍历图像:对图像中的每个像素点进行操作,取该像素及其邻域的像素值。
  3. 排序并替换:将邻域内的像素值排序,取排序后的中位数,并用该中位数值替代当前像素的值。
  4. 处理边界:对于图像的边缘像素,邻域可能会超出图像范围,通常可以采取填充边界或镜像填充等方法处理。

(3)中值滤波的优缺点 

优点:

  • 去噪效果好:中值滤波能够有效去除椒盐噪声,因为椒盐噪声通常是极端的亮点或暗点,而中值滤波能够将这些极端值替换为邻域的中位数。
  • 保边缘能力强:相比均值滤波,中值滤波对图像的边缘信息影响较小,因为它不会对像素值进行平均化,而是通过排序选择合适的中位数来替换。
  • 无需假设噪声分布:与高斯滤波等方法不同,中值滤波不依赖于噪声的统计特性,因此对不同类型的噪声具有较好的鲁棒性。

缺点:

  • 计算复杂度较高:对于每个像素,需对邻域像素进行排序,时间复杂度为O(k^{2}\log (k^{2})),尤其是当图像较大时,计算量较大。
  • 对细节有一定影响:尽管中值滤波能有效去除噪声,但在处理较复杂的图像时,过度滤波可能会导致图像细节的损失。

在OpenCV中,可以使用cv2.medianBlur()函数实现中值滤波。 

import cv2# 读取图像
image = cv2.imread('image.jpg')# 使用3x3的中值滤波
median_blurred_image = cv2.medianBlur(image, 3)# 显示原图与处理中值滤波后的图像
cv2.imshow('Original Image', image)
cv2.imshow('Median Filtered Image', median_blurred_image)# 等待按键关闭窗口
cv2.waitKey(0)
cv2.destroyAllWindows()

cv2.medianBlur(image, ksize):这个函数接受两个参数,image 是输入图像,ksize 是滤波器的大小,通常为奇数(例如 3、5、7 等)。它会使用一个 k×k 的邻域进行中值滤波。

中值滤波是一种有效的图像去噪方法,尤其适用于去除椒盐噪声。它的主要优点是能够在去噪的同时保留边缘和细节信息,因此在许多图像处理和计算机视觉任务中得到了广泛应用。尽管它的计算复杂度相对较高,但它对于处理噪声的鲁棒性和效果常常使其成为首选方法之一。

 4、双边滤波

  • 原理:双边滤波不仅考虑像素空间中的邻近关系,还考虑像素值的相似性,能够在平滑图像的同时保留边缘。
  • 效果:在去噪的同时能较好地保留图像的边缘信息,适用于去除细微噪声且保持图像细节的场景。
  • 实现:双边滤波结合了空间距离和像素值差异进行加权处理,相较于其他滤波器,计算复杂度较高。

双边滤波(Bilateral Filtering)是一种在图像处理中常用的非线性滤波方法,能够在平滑图像的同时保留图像的边缘信息。与传统的线性滤波方法(如均值滤波、高斯滤波)不同,双边滤波不仅考虑像素的空间邻近性,还考虑像素值的相似性,这使得它在处理图像细节和边缘时表现出色。 

(1)双边滤波的原理 

双边滤波的核心思想是在每个像素的邻域内进行加权平均,但权重不仅依赖于空间距离,还依赖于像素值的相似度。这种加权方式使得在平滑区域(没有边缘的地方)能够有效地进行平滑,而在边缘附近则能够保留边缘信息。

对于图像中的每个像素点 p,双边滤波通过以下步骤进行:

  1. 空间权重:基于像素之间的空间距离d(p,q),越靠近的像素,其权重越大。
  2. 像素值权重:基于像素值之间的相似度\left | \left | I(p)-I(q) \right | \right |,像素值相似的点给予更高的权重。
  3. 加权平均:最终通过计算空间和像素值的加权平均来得到新的像素值。

(2)双边滤波的数学公式 

对于图像中一个像素I(p),其经过双边滤波后的值{I}'(p)是通过加权平均其邻域内像素值得到的,公式如下:

 (3)双边滤波的步骤

  1. 计算邻域内像素的空间权重:使用高斯函数计算像素之间的空间距离d(p,q)权重。
  2. 计算像素值的相似性权重:使用高斯函数计算像素值之间的差异\left | I(p)-I(q) \right |权重。
  3. 计算加权平均:对每个像素,考虑空间权重和像素值权重的加权平均,得到新的像素值。
  4. 归一化处理:为了使得加权平均的结果合理,需要对加权和进行归一化,通常会通过计算一个归一化因子W_{p}来完成。

(4)双边滤波的优缺点 

优点:

  • 边缘保留:双边滤波能够在去噪的同时保持图像的边缘信息,因此特别适合去除噪声同时保持细节的任务。
  • 非线性:由于双边滤波是基于像素值的相似度加权的,因此它是非线性的,可以很好地处理图像中的各种噪声。
  • 适用性广泛:双边滤波不仅可以用于图像去噪,还可以用于图像平滑、纹理去除等多种应用。

缺点:

  • 计算量大:由于双边滤波需要计算每个像素与其邻域内其他像素的空间距离和像素值差异,因此其计算量较大,尤其是在高分辨率图像上,效率较低。
  • 参数调节困难:双边滤波有两个重要的参数:空间权重的标准差\sigma _{d}和像素值权重的标准差\sigma _{r}​,需要根据图像的不同特性进行调节,调节不当可能会导致过度平滑或保留过多噪声。

在OpenCV中,可以使用cv2.bilateralFilter()函数实现双边滤波。 

import cv2# 读取图像
image = cv2.imread('image.jpg')# 使用直径为15,标准差为75的双边滤波
bilateral_filtered_image = cv2.bilateralFilter(image, d=15, sigmaColor=75, sigmaSpace=75)# 显示原图与双边滤波后的图像
cv2.imshow('Original Image', image)
cv2.imshow('Bilateral Filtered Image', bilateral_filtered_image)# 等待按键关闭窗口
cv2.waitKey(0)
cv2.destroyAllWindows()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/492036.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

在IDE中使用Git

我们在开发的时候肯定是经常使用IDE进行开发的,所以在IDE中使用Git也是非常常用的,接下来以IDEA为例,其他的VS code ,Pycharm等IDE都是一样的。 在IDEA中配置Git 1.打开IDEA 2.点击setting 3.直接搜索git 如果已经安装了会自…

数据可视化-1. 折线图

目录 1. 折线图适用场景分析 1. 1 时间序列数据展示 1.2 趋势分析 1.3 多变量比较 1.4 数据异常检测 1.5 简洁易读的数据可视化 1.6 特定领域的应用 2. 折线图局限性 3. 折线图代码实现 3.1 Python 源代码 3.2 折线图效果(网页显示) 1. 折线图…

Linux -- 线程控制相关的函数

目录 pthread_create -- 创建线程 参数 返回值 代码 -- 不传 args: 编译时带 -lpthread 运行结果 为什么输出混杂? 如何证明两个线程属于同一个进程? 如何证明是两个执行流? 什么是LWP? 代码 -- 传 args&a…

es 开启slowlog

在 Elasticsearch 中,slowlog(慢日志)是用来记录查询和索引操作的性能数据,帮助你诊断性能瓶颈。你可以为查询 (search slowlog) 和索引 (index slowlog) 配置慢日志。 数据准备 POST /products/_doc/1 {"product_name&quo…

【韩顺平 Java满汉楼项目 控制台版】MySQL+JDBC+druid

文章目录 功能界面用户登录界面显示餐桌状态预定显示所有菜品点餐查看账单结账退出满汉楼 程序框架图项目依赖项目结构方法调用图功能实现登录显示餐桌状态订座显示所有菜品点餐查看账单结账退出满汉楼 扩展思考多表查询如果将来字段越来越多怎么办? 员工信息字段可…

知道一个服务器IP地址如果attack服务器地址

CSDN提醒:亲爱的用户:你好! 你的账号于2024-12-17 19:04:04在美国美国登录,登录IP为:47.238.159.124。若非本人登录,请及时修改密码。 莫名其妙显示美国登录了我的CSDN博客 卧槽 服务器的IP地址是一个用于…

3大Excel免费功能

推荐几个免费excel图表绘制工具 Power Map Power Map是Excel的内置功能 Power Map可在Windows用户的Excel 2013或者Excel 2016或者Office 365中使用,如下图, 看案例 动态地图1 动态地图2

前端面试问题集合

0 HTML5相关 websocket WebSocket 使用ws或wss协议,Websocket是一个持久化的协议,相对于HTTP这种非持久的协议来说。WebSocket API最伟大之处在于服务器和客户端可以在给定的时间范围内的任意时刻,相互推送信息。WebSocket并不限于以Ajax(或X…

强化学习路径规划:基于SARSA算法的移动机器人路径规划,可以更改地图大小及起始点,可以自定义障碍物,MATLAB代码

一、SARSA算法概述 SARSA(State-Action-Reward-State-Action)是一种在线强化学习算法,用于解决决策问题,特别是在部分可观测的马尔可夫决策过程(POMDPs)中。SARSA算法的核心思想是通过与环境的交互来学习一…

通过基于几何的网格自适应增强 CFD 网格划分

CFD 仿真中的网格质量问题 在 CFD 仿真中,网格质量直接影响分析精度和效率。结构良好的网格可以准确地捕捉物理现象,确保可靠的结果,而质量差会导致错误和代价高昂的设计缺陷。高质量的网格在复杂的几何体中至关重要,因为流体行为…

Dockerfile文件编写

目录 Dockerfile文件编写 1.什么是Dockerfile 2. Dockerfile作用 3.dockerfile 的基本结构: 4.dockerfile指令: FROM 指定基础镜像,dockerfile构建镜像的第一个指令 LABEL 指定镜像维护人信息 ADD/COPY 复制本地文件/目录到镜像中 …

ARM学习(38)多进程多线程之间的通信方式

ARM学习(38)ARM学习(38)多进程多线程之间的通信方式 一、问题背景 笔者在调试模拟器的时候,碰到进程间通信的问题,一个进程在等另外一个进程ready的时候,迟迟等不到,然后通过调试发现,另外一个进程变量已经变化了,但是当前进程变量没变化,需要了解进程间通信的方式…

pytest -s执行的路径

pytest -s执行的路径: 直接写pytest -s,表示从当前路径下开始执行全部.py的文件。 执行具体指定文件:pytest -s .\testXdist\test_dandu.py 下面这样执行pytest -s 会报找不到文件或没权限访问, 必须要加上具体文件路径pytest -s…

XXE练习

pikachu-XXE靶场 1.POC:攻击测试 <?xml version"1.0"?> <!DOCTYPE foo [ <!ENTITY xxe "a">]> <foo>&xxe;</foo> 2.EXP:查看文件 <?xml version"1.0"?> <!DOCTYPE foo [ <!ENTITY xxe SY…

Numpy基本介绍

目录 1、Numpy的优势 1.1、ndarray介绍 1.2、ndarray与Python原生list运算效率对比 1.3、ndarray的优势 1.3.1、内存块风格 1.3.2、ndarray支持并行化运算(向量化运算) 1.3.3、效率远高于纯Python代码 2、N维数组-ndarray 2.1、ndarray的属性 2.2、ndarray的形状 2…

用前端html如何实现2024烟花效果

用HTML、CSS和JavaScript编写的网页&#xff0c;主要用于展示“2024新年快乐&#xff01;”的文字形式烟花效果。下面是对代码主要部分的分析&#xff1a; HTML结构 包含三个<canvas>元素&#xff0c;用于绘制动画。引入百度统计的脚本。 CSS样式 设置body的背景为黑…

makefile文件

简介&#xff1a; 自动化编译&#xff1a;只需要一个make命令&#xff0c;整个工程自动编译 提高编译效率&#xff1a;再次编译时&#xff0c;只编译修改的文件&#xff08;查看时间戳&#xff0c;根据修改文件的时间判断文件是否被修改&#xff09; 基本语法&#xff1a; …

ArKTS基础组件

一.AlphabetIndexer 可以与容器组件联动用于按逻辑结构快速定位容器显示区域的组件。 子组件 color:设置文字颜色。 参数名类型必填说明valueResourceColor是 文字颜色。 默认值&#xff1a;0x99182431。 selectedColor:设置选中项文字颜色。 参数名类型必填说明valueRes…

微积分复习笔记 Calculus Volume 2 - 4.3 Separable Equations

4.3 Separable Equations - Calculus Volume 2 | OpenStax

【爬虫一】python爬虫基础合集一

【爬虫一】python爬虫基础合集一 1. 网络请求了解1.1. 请求的类型1.2. 网络请求协议1.3. 网络请求过程简单图解1.4. 网络请求Headers(其中的关键字释义)&#xff1a;请求头、响应头 2. 网络爬虫的基本工作节点2.1. 了解简单网络请求获取响应数据的过程所涉及要点 1. 网络请求了…