【返璞归真】score检验:似然比的得分检验(Likelihood Ratio Score Test)

Score检验(Score Test)是一种用于假设检验的方法,特别是在统计建模中,常用于估计模型参数时检验某个假设是否成立。它的全名是“似然比的得分检验”(Likelihood Ratio Score Test),通常用于大样本条件下对参数进行检验。

Score检验的基本思路是基于得分函数(score function),即似然函数对参数的偏导数。得分函数反映了在某个参数值下,似然函数的变化率,表示了该点附近模型拟合优度的敏感性。

主要步骤:

  1. 选择假设

    • 原假设(H0):某些参数等于特定值,通常是零。
    • 备择假设(H1):参数不等于这个特定值。
  2. 得分函数(Score Function)
    得分函数是似然函数对参数的导数。假设我们有似然函数 L ( θ ) L(\theta) L(θ),得分函数就是它的导数:
    U ( θ ) = ∂ ∂ θ log ⁡ L ( θ ) U(\theta) = \frac{\partial}{\partial \theta} \log L(\theta) U(θ)=θlogL(θ)

  3. 计算Score检验统计量
    得分检验的检验统计量通常为:
    S = U ( θ ^ 0 ) T I ( θ ^ 0 ) − 1 U ( θ ^ 0 ) n S = \frac{U(\hat{\theta}_0)^T I(\hat{\theta}_0)^{-1} U(\hat{\theta}_0)}{n} S=nU(θ^0)TI(θ^0)1U(θ^0)
    其中, U ( θ ^ 0 ) U(\hat{\theta}_0) U(θ^0) 是在原假设下估计的得分函数, I ( θ ^ 0 ) I(\hat{\theta}_0) I(θ^0) 是Fisher信息矩阵(即得分函数的二阶导数的期望), n n n 是样本大小。

  4. 比较临界值
    该统计量的分布在原假设成立的条件下通常近似于卡方分布。因此,可以将统计量与卡方分布的临界值进行比较,从而决定是否拒绝原假设。

优点:

  • 大样本性质:Score检验在大样本下非常有效,尤其适用于似然函数没有显式解的情况。
  • 无需完整拟合模型:与其他检验方法(如似然比检验)不同,score检验只需要估计原假设下的得分函数,而不需要拟合完全模型。

应用:

  • 参数检验:用于检验某些参数是否等于零或者其他特定值。
  • 模型拟合:常用于检验复杂模型中某些参数的显著性,尤其是在无法直接计算似然比时。

例子:

假设我们想检验某个回归模型中的某个参数是否为零。我们可以计算这个参数的得分函数,构造Score检验统计量,并与卡方分布的临界值进行比较,从而决定是否拒绝原假设(即该参数为零)。


下面我会通过详细的公式推导来解释Score检验的过程,直接进入数学推导。

1. 假设模型与似然函数

假设我们有一个包含参数 θ \theta θ 的统计模型,样本 X 1 , X 2 , … , X n X_1, X_2, \dots, X_n X1,X2,,Xn 来自这个模型的概率分布,似然函数为 L ( θ ) = P ( X 1 , X 2 , … , X n ∣ θ ) L(\theta) = P(X_1, X_2, \dots, X_n \mid \theta) L(θ)=P(X1,X2,,Xnθ)

通常我们取似然函数的对数,称之为对数似然函数:
ℓ ( θ ) = log ⁡ L ( θ ) \ell(\theta) = \log L(\theta) (θ)=logL(θ)

2. 得分函数

得分函数是对数似然函数对参数 θ \theta θ 的一阶导数:
U ( θ ) = ∂ ∂ θ ℓ ( θ ) U(\theta) = \frac{\partial}{\partial \theta} \ell(\theta) U(θ)=θ(θ)
即:
U ( θ ) = ∂ ∂ θ log ⁡ L ( θ ) U(\theta) = \frac{\partial}{\partial \theta} \log L(\theta) U(θ)=θlogL(θ)

3. Fisher 信息矩阵

Fisher信息矩阵是得分函数的二阶导数的期望:
I ( θ ) = − E [ ∂ 2 ∂ θ 2 ℓ ( θ ) ] I(\theta) = - \mathbb{E} \left[ \frac{\partial^2}{\partial \theta^2} \ell(\theta) \right] I(θ)=E[θ22(θ)]
这描述了参数估计的不确定性。它是一个关于参数 θ \theta θ 的矩阵(如果参数有多个)。

4. 在原假设下的得分

在进行Score检验时,我们通常有一个原假设 H 0 : θ = θ 0 H_0: \theta = \theta_0 H0:θ=θ0,我们需要检验原假设下的得分统计量。

θ ^ \hat{\theta} θ^ 是最大似然估计(MLE),我们构造原假设下的得分为:
U ( θ 0 ) = ∂ ∂ θ ℓ ( θ ) ∣ θ = θ 0 U(\theta_0) = \frac{\partial}{\partial \theta} \ell(\theta) \Big|_{\theta = \theta_0} U(θ0)=θ(θ) θ=θ0

5. Score检验统计量

Score检验的统计量 S S S 通过以下公式定义:
S = U ( θ ^ 0 ) T [ I ( θ ^ 0 ) ] − 1 U ( θ ^ 0 ) S = U(\hat{\theta}_0)^T \left[ I(\hat{\theta}_0) \right]^{-1} U(\hat{\theta}_0) S=U(θ^0)T[I(θ^0)]1U(θ^0)
其中:

  • θ ^ 0 \hat{\theta}_0 θ^0 是在原假设下的估计值;
  • I ( θ ^ 0 ) I(\hat{\theta}_0) I(θ^0) 是Fisher信息矩阵在 θ 0 \theta_0 θ0 下的值。

6. 统计量的分布

在原假设 H 0 H_0 H0 成立时,Score检验的统计量 S S S 近似服从卡方分布:
S ∼ χ k 2 S \sim \chi^2_k Sχk2
其中 k k k 是参数空间的维度,即 θ \theta θ 的维度。

7. 决策规则

我们根据检验统计量与卡方分布的临界值 χ k 2 ( α ) \chi^2_k(\alpha) χk2(α) 进行比较:

  • 如果 S > χ k 2 ( α ) S > \chi^2_k(\alpha) S>χk2(α),拒绝原假设 H 0 H_0 H0
  • 如果 S ≤ χ k 2 ( α ) S \leq \chi^2_k(\alpha) Sχk2(α),不拒绝原假设。

8. 结论

通过这些步骤,Score检验给出了一个基于得分函数的检验统计量,该统计量的分布特性(卡方分布)使得它在大样本条件下非常有效,且不需要完全估计整个模型的参数。


通过一个具体的案例来详细展示Score检验的使用过程。

案例:检验正态分布的均值

假设我们有一组样本数据,来自于一个正态分布 N ( μ , σ 2 ) N(\mu, \sigma^2) N(μ,σ2),其中 μ \mu μ 是均值, σ 2 \sigma^2 σ2 是方差。我们想要检验正态分布的均值 μ \mu μ 是否等于某个特定值 μ 0 \mu_0 μ0

步骤 1:设定假设

我们设定原假设和备择假设:

  • 原假设 H 0 : μ = μ 0 H_0: \mu = \mu_0 H0:μ=μ0
  • 备择假设 H 1 : μ ≠ μ 0 H_1: \mu \neq \mu_0 H1:μ=μ0
步骤 2:似然函数和对数似然函数

正态分布的概率密度函数为:
f ( x i ∣ μ , σ 2 ) = 1 2 π σ 2 exp ⁡ ( − ( x i − μ ) 2 2 σ 2 ) f(x_i \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi \sigma^2}} \exp\left( - \frac{(x_i - \mu)^2}{2\sigma^2} \right) f(xiμ,σ2)=2πσ2 1exp(2σ2(xiμ)2)

对于一个样本 X 1 , X 2 , … , X n X_1, X_2, \dots, X_n X1,X2,,Xn,似然函数为:
L ( μ , σ 2 ) = ∏ i = 1 n f ( x i ∣ μ , σ 2 ) L(\mu, \sigma^2) = \prod_{i=1}^n f(x_i \mid \mu, \sigma^2) L(μ,σ2)=i=1nf(xiμ,σ2)

对数似然函数是:
ℓ ( μ , σ 2 ) = log ⁡ L ( μ , σ 2 ) = − n 2 log ⁡ ( 2 π σ 2 ) − 1 2 σ 2 ∑ i = 1 n ( x i − μ ) 2 \ell(\mu, \sigma^2) = \log L(\mu, \sigma^2) = - \frac{n}{2} \log(2\pi \sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2 (μ,σ2)=logL(μ,σ2)=2nlog(2πσ2)2σ21i=1n(xiμ)2

步骤 3:得分函数

得分函数是对数似然函数对 μ \mu μ 的一阶导数:
U ( μ ) = ∂ ∂ μ ℓ ( μ , σ 2 ) U(\mu) = \frac{\partial}{\partial \mu} \ell(\mu, \sigma^2) U(μ)=μ(μ,σ2)

我们计算该导数:
U ( μ ) = 1 σ 2 ∑ i = 1 n ( x i − μ ) U(\mu) = \frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \mu) U(μ)=σ21i=1n(xiμ)

步骤 4:Fisher信息矩阵

Fisher信息矩阵是得分函数的二阶导数的期望。我们首先对得分函数进行二阶导数:
I ( μ ) = − E [ ∂ 2 ∂ μ 2 ℓ ( μ , σ 2 ) ] I(\mu) = - \mathbb{E} \left[ \frac{\partial^2}{\partial \mu^2} \ell(\mu, \sigma^2) \right] I(μ)=E[μ22(μ,σ2)]

计算该二阶导数:
I ( μ ) = n σ 2 I(\mu) = \frac{n}{\sigma^2} I(μ)=σ2n

步骤 5:Score检验统计量

我们现在来计算Score检验的统计量。首先,我们在原假设下(即 μ = μ 0 \mu = \mu_0 μ=μ0)计算得分函数:
U ( μ 0 ) = 1 σ 2 ∑ i = 1 n ( x i − μ 0 ) U(\mu_0) = \frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \mu_0) U(μ0)=σ21i=1n(xiμ0)

然后计算Score检验的统计量:
S = U ( μ 0 ) 2 ⋅ 1 I ( μ 0 ) = ( 1 σ 2 ∑ i = 1 n ( x i − μ 0 ) ) 2 ⋅ σ 2 n S = U(\mu_0)^2 \cdot \frac{1}{I(\mu_0)} = \left( \frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \mu_0) \right)^2 \cdot \frac{\sigma^2}{n} S=U(μ0)2I(μ0)1=(σ21i=1n(xiμ0))2nσ2
S = 1 n ( ∑ i = 1 n ( x i − μ 0 ) ) 2 S = \frac{1}{n} \left( \sum_{i=1}^n (x_i - \mu_0) \right)^2 S=n1(i=1n(xiμ0))2

步骤 6:检验统计量的分布

在原假设 H 0 : μ = μ 0 H_0: \mu = \mu_0 H0:μ=μ0 下,Score检验的统计量 S S S 服从卡方分布 χ 1 2 \chi^2_1 χ12,因为 μ \mu μ 只有一个参数。

步骤 7:进行假设检验
  1. 计算样本数据 X 1 , X 2 , … , X n X_1, X_2, \dots, X_n X1,X2,,Xn 中的 S S S 值。
  2. 比较该统计量 S S S 与卡方分布的临界值 χ 1 2 ( α ) \chi^2_1(\alpha) χ12(α),通常 α = 0.05 \alpha = 0.05 α=0.05
  • 如果 S > χ 1 2 ( α ) S > \chi^2_1(\alpha) S>χ12(α),我们拒绝原假设,认为 μ ≠ μ 0 \mu \neq \mu_0 μ=μ0
  • 如果 S ≤ χ 1 2 ( α ) S \leq \chi^2_1(\alpha) Sχ12(α),我们不拒绝原假设,认为没有足够证据表明 μ ≠ μ 0 \mu \neq \mu_0 μ=μ0

例子:具体计算

假设我们有以下样本数据:
x 1 = 2.3 , x 2 = 2.5 , x 3 = 2.7 , x 4 = 2.9 , x 5 = 3.1 x_1 = 2.3, \, x_2 = 2.5, \, x_3 = 2.7, \, x_4 = 2.9, \, x_5 = 3.1 x1=2.3,x2=2.5,x3=2.7,x4=2.9,x5=3.1
并且我们想要检验均值是否为 μ 0 = 2.5 \mu_0 = 2.5 μ0=2.5,且已知样本方差 σ 2 = 0.1 \sigma^2 = 0.1 σ2=0.1

  1. 计算得分函数:
    U ( 2.5 ) = 1 0.1 ( ( 2.3 − 2.5 ) + ( 2.5 − 2.5 ) + ( 2.7 − 2.5 ) + ( 2.9 − 2.5 ) + ( 3.1 − 2.5 ) ) = 1 0.1 ( − 0.2 + 0 + 0.2 + 0.4 + 0.6 ) = 1 0.1 × 1 = 10 U(2.5) = \frac{1}{0.1} \left( (2.3 - 2.5) + (2.5 - 2.5) + (2.7 - 2.5) + (2.9 - 2.5) + (3.1 - 2.5) \right) = \frac{1}{0.1} \left( -0.2 + 0 + 0.2 + 0.4 + 0.6 \right) = \frac{1}{0.1} \times 1 = 10 U(2.5)=0.11((2.32.5)+(2.52.5)+(2.72.5)+(2.92.5)+(3.12.5))=0.11(0.2+0+0.2+0.4+0.6)=0.11×1=10

  2. 计算Fisher信息矩阵:
    I ( 2.5 ) = 5 0.1 = 50 I(2.5) = \frac{5}{0.1} = 50 I(2.5)=0.15=50

  3. 计算Score检验统计量:
    S = U ( 2.5 ) 2 I ( 2.5 ) = 1 0 2 50 = 100 50 = 2 S = \frac{U(2.5)^2}{I(2.5)} = \frac{10^2}{50} = \frac{100}{50} = 2 S=I(2.5)U(2.5)2=50102=50100=2

  4. 查找卡方分布的临界值:

    • 对于 α = 0.05 \alpha = 0.05 α=0.05 和自由度 k = 1 k = 1 k=1,卡方分布的临界值 χ 1 2 ( 0.05 ) = 3.841 \chi^2_1(0.05) = 3.841 χ12(0.05)=3.841
  5. 比较统计量与临界值:
    S = 2 < 3.841 S = 2 < 3.841 S=2<3.841
    因此,我们不能拒绝原假设,认为均值 μ = 2.5 \mu = 2.5 μ=2.5 是合理的。

总结

通过这个案例,我们展示了如何应用Score检验来检验正态分布的均值。我们通过计算得分函数、Fisher信息矩阵,得到检验统计量,并根据卡方分布进行假设检验。


Score检验的依据

Score检验的依据主要来源于大样本统计理论中的得分函数渐近分布的性质。要理解为什么Score得分能够用来进行假设检验,我们需要从以下几个核心的概念和推导来详细解释:

1. 得分函数与似然函数

假设我们有一个模型,包含未知的参数 θ \theta θ,而我们从该模型中获取了样本数据 X 1 , X 2 , … , X n X_1, X_2, \dots, X_n X1,X2,,Xn。似然函数 L ( θ ) L(\theta) L(θ) 描述了参数 θ \theta θ 给定数据的可能性,具体是:
L ( θ ) = P ( X 1 , X 2 , … , X n ∣ θ ) L(\theta) = P(X_1, X_2, \dots, X_n \mid \theta) L(θ)=P(X1,X2,,Xnθ)
而我们对似然函数取对数,得到对数似然函数:
ℓ ( θ ) = log ⁡ L ( θ ) \ell(\theta) = \log L(\theta) (θ)=logL(θ)

得分函数是对数似然函数关于参数 θ \theta θ 的一阶导数:
U ( θ ) = ∂ ∂ θ ℓ ( θ ) U(\theta) = \frac{\partial}{\partial \theta} \ell(\theta) U(θ)=θ(θ)
得分函数的直观意义是:它反映了似然函数相对于参数变化的灵敏度,即数据给定时,参数的变化方向和大小。得分函数为零的点通常是最大似然估计(MLE)的候选点。

2. 大样本渐近理论

在大样本条件下,似然估计 θ ^ \hat{\theta} θ^ 具有一致性和渐近正态性,也就是说,随着样本量 n → ∞ n \to \infty n θ ^ \hat{\theta} θ^ 会收敛到真实值 θ 0 \theta_0 θ0,并且其分布趋向于正态分布。

  • 似然函数在 θ 0 \theta_0 θ0 处取得最大值(即最大似然估计 θ ^ \hat{\theta} θ^),得分函数在 θ 0 \theta_0 θ0 处趋于零。
  • 得分函数的期望 E [ U ( θ 0 ) ] = 0 \mathbb{E}[U(\theta_0)] = 0 E[U(θ0)]=0,并且在 θ 0 \theta_0 θ0 处的方差由Fisher信息矩阵表示,即:
    I ( θ 0 ) = − E [ ∂ 2 ℓ ( θ 0 ) ∂ θ 2 ] I(\theta_0) = - \mathbb{E}\left[\frac{\partial^2 \ell(\theta_0)}{\partial \theta^2}\right] I(θ0)=E[θ22(θ0)]
    Fisher信息矩阵刻画了估计量的精度。

3. 渐近正态性与得分检验

在大样本条件下,得分函数 U ( θ ) U(\theta) U(θ) 和最大似然估计 θ ^ \hat{\theta} θ^ 之间有一种近似关系。具体地,得分函数可以用来检验原假设 H 0 : θ = θ 0 H_0: \theta = \theta_0 H0:θ=θ0 是否成立。

通过大样本的渐近理论,如果我们假设参数 θ \theta θ 在原假设 H 0 H_0 H0 下等于某个特定值 θ 0 \theta_0 θ0,则得分函数 U ( θ 0 ) U(\theta_0) U(θ0) 的分布近似为:
U ( θ 0 ) ∼ N ( 0 , I ( θ 0 ) ) U(\theta_0) \sim \mathcal{N}(0, I(\theta_0)) U(θ0)N(0,I(θ0))
换句话说,在原假设 H 0 H_0 H0 下,得分函数趋近于正态分布,均值为零,方差为Fisher信息矩阵的逆。

4. Score检验的构造与依据

Score检验的核心思想就是利用得分函数的这一渐近性质来进行假设检验。具体地,我们检验某个参数是否为特定值(如 θ 0 \theta_0 θ0)。在原假设 H 0 : θ = θ 0 H_0: \theta = \theta_0 H0:θ=θ0 下,得分函数的期望为零,且其方差由Fisher信息矩阵给出。因此,我们可以构造如下的检验统计量:
S = U ( θ ^ 0 ) T I ( θ ^ 0 ) − 1 U ( θ ^ 0 ) S = U(\hat{\theta}_0)^T I(\hat{\theta}_0)^{-1} U(\hat{\theta}_0) S=U(θ^0)TI(θ^0)1U(θ^0)
在原假设 H 0 H_0 H0 下,统计量 S S S 服从卡方分布 χ k 2 \chi^2_k χk2(其中 k k k 是参数的维度),因此可以根据卡方分布进行假设检验。

为什么得分函数能用来判断?
  1. 得分函数的渐近零性:在原假设 H 0 H_0 H0 下,得分函数趋于零。通过计算得分函数的值,我们实际上在测试是否存在显著的偏离原假设。如果得分函数不接近零,那么原假设就可能被拒绝。

  2. 大样本近似正态性:得分函数在大样本下服从正态分布,均值为零,方差由Fisher信息矩阵控制。因此,得分函数的平方和标准化后(通过 Fisher信息矩阵)可以构成检验统计量,这个统计量在大样本下呈现卡方分布,从而可以用来做假设检验。

5. 总结

Score检验的依据是基于得分函数在大样本下的渐近分布特性:

  • 得分函数反映了似然函数对参数变化的灵敏度。
  • 在原假设下,得分函数的期望为零,并且其分布近似正态,标准化后服从卡方分布。
  • 因此,Score检验通过得分函数与Fisher信息矩阵的组合,构造检验统计量,利用卡方分布来进行假设检验。

通过这一过程,Score检验能够有效地判断原假设是否成立,尤其适用于大样本的情形。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/493147.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Flask内存马学习

文章目录 参考文章环境搭建before_request方法构造内存马after_request方法构造内存马errorhandler方式构造内存马add_url_rule方式构造内存马 参考文章 https://www.mewo.cc/archives/10/ https://www.cnblogs.com/gxngxngxn/p/18181936 前人栽树, 后人乘凉 大佬们太nb了, …

小红书关键词搜索采集 | AI改写 | 无水印下载 | 多维表格 | 采集同步飞书

小红书关键词搜索采集 | AI改写 | 无水印下载 | 多维表格 | 采集同步飞书 一、下载影刀&#xff1a; https://www.winrobot360.com/share/activity?inviteUserUuid595634970300317698 二、加入应用市场 https://www.yingdao.com/share/accede/?inviteKeyb2d3f22a-fd6c-4a…

(五)FT2232HL高速调试器之--三步实现STM32的VSCODE在线仿真工程搭建

对于单片机开发&#xff0c;rtthread studios 与 vscode&#xff0c;鱼与熊掌可以兼得否&#xff0c;其实是可以的&#xff0c;下面通过三个步骤&#xff0c;实现基于FT2232HL高速调试器的&#xff0c;stm32的VSCODE在线仿真工程的搭建。 1、软件下载与VSCODE插件安装配置 软…

【机器人】ATM 用于策略学习的任意点轨迹建模 RSS 2024 | 论文精读

文章提出了一种新的框架&#xff0c;名为Any-point Trajectory Modeling (ATM) &#xff0c;称为任意点轨迹建模。 用于从视频中预测任意点的未来轨迹&#xff0c;从而在最少动作标签数据的情况下&#xff0c;学习稳健的视觉运动策略。 图中展示了三个案例&#xff0c;打开柜子…

linux----系统i/o

基本概念 在Linux系统中&#xff0c;I/O&#xff08;Input/Output&#xff09;即输入/输出&#xff0c;是操作系统与外部设备&#xff08;如磁盘、终端、网络等&#xff09;进行数据交互的机制。它涉及到从外部设备读取数据到内存&#xff08;输入操作&#xff09;&#xff0c…

Mac 开机 一闪框 mediasharingd

Mac 开机 一闪框一闪而过 mediasharingd ->系统偏好设置->共享->服务的复选框全部取消&#xff0c;保存。 重启解决。

纯前端实现更新检测

通过判断打包后的html文件中的js入口是否发生变化&#xff0c;进而实现前端的代码更新 为了使打包后的文件带有hash值&#xff0c;需要对vite打包进行配置 import { defineConfig } from vite; import vue from vitejs/plugin-vue; import { resolve } from path; import AutoI…

arcgisPro相接多个面要素转出为完整独立线要素

1、使用【面转线】工具&#xff0c;并取消勾选“识别和存储面邻域信息”&#xff0c;如下&#xff1a; 2、得到的线要素&#xff0c;如下&#xff1a;

基于SpringBoot+html+vue实现的林业产品推荐系统【源码+文档+数据库文件+包部署成功+答疑解惑问到会为止】

代码包运行启动成功&#xff01;不管你有没有运行环境&#xff0c;哪怕你是刚买的新电脑&#xff0c;也包启动运行成功&#xff01;有不懂的地方随便问&#xff01;问到会为止&#xff01; 【功能介绍】 基于SpringBootVue实现的林业产品推荐系统采用前后端分离的架构方式&…

【Java基础面试题024】Java中包装类型和基本类型的区别是什么?

回答重点 基本类型&#xff1a; Java中有8种基本数据类型&#xff08;byte、short、int、long、float、double、char、boolean&#xff09;他们是直接存储数值的变量&#xff0c;位于栈上&#xff08;局部变量在栈上、成员变量在堆上&#xff0c;静态字段/类在方法区&#xf…

.net core在linux导出excel,System.Drawing.Common is not supported on this platform

使用框架 .NET7 导出组件 Aspose.Cells for .NET 5.3.1 asp.net core mvc 如果使用Aspose.Cells导出excel时&#xff0c;报错 &#xff1a; System.Drawing.Common is not supported on this platform 平台特定实现&#xff1a; 对于Windows平台&#xff0c;System.Drawing.C…

web自动化测试知识总结

&#x1f345; 点击文末小卡片&#xff0c;免费获取软件测试全套资料&#xff0c;资料在手&#xff0c;涨薪更快 一、自动化测试基本介绍 1、自动化测试概述&#xff1a; 什么是自动化测试&#xff1f;一般说来所有能替代人工测试的方式都属于自动化测试&#xff0c;即通过工…

怿星科技联合赛力斯举办workshop活动,进一步推动双方合作

12月18日&#xff0c;由怿星科技与赛力斯汽车联合举办的workshop活动在赛力斯五云湖总部展开&#xff0c;双方嘉宾围绕智能汽车发展趋势、行业前沿技术、汽车电子网络与功能测试等核心议题展开了深度对话与交流&#xff0c;并现场参观演示了多套前沿产品。怿星科技CEO潘凯、汽车…

【Flutter_Web】Flutter编译Web第二篇(webview篇):flutter_inappwebview如何改造方法,变成web之后数据如何交互

前言 欢迎来到第二篇文章&#xff0c;这也是第二个难题&#xff0c;就是原有的移动端本身一些页面H5的形式去呈现&#xff08;webview&#xff09;&#xff0c;例如某些需要动态更换内容的页面&#xff0c;某些活动页面、支付页面&#xff0c;不仅仅做页面呈现&#xff0c;还包…

JS信息收集(小迪网络安全笔记~

免责声明&#xff1a;本文章仅用于交流学习&#xff0c;因文章内容而产生的任何违法&未授权行为&#xff0c;与文章作者无关&#xff01;&#xff01;&#xff01; 附&#xff1a;完整笔记目录~ ps&#xff1a;本人小白&#xff0c;笔记均在个人理解基础上整理&#xff0c;…

基于w25q128的智能门禁

项目需求 1. 矩阵键盘输入密码&#xff0c;正确则开锁&#xff0c;错误则提示&#xff0c;三次错误蜂鸣器响3秒&#xff1b; 2. 按下#号确认输入&#xff0c;按下*号修改密码&#xff1b; 3. 密码保存在 W25Q128 里&#xff1b; 4. OLED 屏幕显示信息。

【计算机网络】期末考试预习复习|中

作业讲解 转发器、网桥、路由器和网关(4-6) 作为中间设备&#xff0c;转发器、网桥、路由器和网关有何区别&#xff1f; (1) 物理层使用的中间设备叫做转发器(repeater)。 (2) 数据链路层使用的中间设备叫做网桥或桥接器(bridge)。 (3) 网络层使用的中间设备叫做路…

开放词汇目标检测(Open-Vocabulary Object Detection, OVOD)综述

定义 开放词汇目标检测&#xff08;Open-Vocabulary Object Detection, OVOD&#xff09;是一种目标检测任务&#xff0c;旨在检测和识别那些未在训练集中明确标注的物体类别。传统的目标检测模型通常只能识别有限数量的预定义类别&#xff0c;而OVOD模型则具有识别“开放词汇…

单点登录平台Casdoor搭建与使用,集成gitlab同步创建删除账号

一&#xff0c;简介 一般来说&#xff0c;公司有很多系统使用&#xff0c;为了实现统一的用户名管理和登录所有系统&#xff08;如 GitLab、Harbor 等&#xff09;&#xff0c;并在员工离职时只需删除一个主账号即可实现权限清除&#xff0c;可以采用 单点登录 (SSO) 和 集中式…

算法笔记—前缀和(动态规划)

【模板】前缀和_牛客题霸_牛客网 (nowcoder.com) #include <initializer_list> #include <iostream> #include <vector> using namespace std;int main() {//输入数据int n,q;cin>>n>>q;vector<int> arr;arr.resize(n1);for(int i1;i<…