火山引擎发布数据飞轮 2.0,AI 重塑企业数据消费

12 月 18 日,在 2024 冬季火山引擎 FORCE 原动力大会上,火山引擎数智平台(VeDI)正式升级发布数据飞轮 2.0 模式。

延续去年 4 月发布的数据飞轮“以数据消费促资产建设,以数据消费助业务发展”的核心内涵,此次升级后,数据飞轮 2.0 将 AI 视作数智化的核心竞争力,借助 AI 技术推动企业更普惠的数据消费。

火山引擎数据飞轮 2.0 模式图

本次模式升级包括了:智能数据洞察 DataWind ChatBI 智能体、增长分析 DataFinder 智能分析助手、A/B 测试 DataTester 智能实验助手、客户数据平台 VeCDP 智能营销助手、增长营销平台 GMP 创意助手、大数据研发治理套件 DataLeap 运维助手和 E-MapReduce 全模态数据处理引擎等,全系列火山引擎数智平台产品 AI 能力的发布。

与此同时,两大数据飞轮 2.0 核心解决方案首次公开亮相。

其一为 “DataFabric 驱动下的 ChatBI 智能体解决方案”,亮点在于赋予业务自定义的数据智能体能力,有效降低业务调用与理解数据的难度;

其二是 “多模态数据湖解决方案”,该方案专注于处理全模态数据,扩容企业潜在数字资产规模。

至此,数据飞轮 2.0 实现数据生产、管理与应用各环节全方位 AI 能力深度融合,推动企业数据消费便捷化、资产建设低门槛化,加速企业数据价值实现进程。

数据消费的新体验:ChatBI 智能体

在 2.0 升级前,火山引擎数据飞轮已在近两年的时间里,帮助众多企业通过数据消费挖掘数据价值,助力业务增长:

领克汽车通过数据飞轮构建用户数据平台,精准洞察消费者需求,实现差异化营销,运营成本降低 70%;德邦快递通过数据飞轮解决数据"黑盒"问题,用户识别和营销效率显著提升,月营销活动峰值可达 100 场,效率提高 5 倍;玛丽黛佳两年内完成数智化转型,搭建的“数据找人”模式,让数据自动生成并流向业务负责人,实现实时决策……

数据飞轮模式并非静态技术框架,而是有生命力的生态系统,其生命力源于数据消费。而,企业数据消费的广度与深度,则直接决定企业数智化的程度。

上述企业在数据飞轮模式助力下,内部数据消费水平显著提升。

然而,在与更广泛的客户合作中,火山引擎数智平台察觉到一个关键难点:企业内部各岗位角色间的的数字化水平存在较大差异,数据分析与应用产品的使用往往局限在少部分专业角色中,这在一定程度上制约了企业级数据消费活力的释放。

这也引发了火山引擎数智平台的思考:如何确保企业各业务角色以及每一层级组织,都能便捷、高效地获取和使用数据?

在 AI 涌现的趋势下,他们摸索着找到了新解法——构建业务自己的数据智能体,在经由内部多个产品实践后,最终发布了“Data Fabric 驱动下的 ChatBI 智能体”解决方案。

火山引擎 Data Fabric 驱动下的 ChatBI 智能体解决方案

事实上,在去年,围绕大模型能力,火山引擎数智平台已经推出了智能数据洞察 DataWind 分析助手等功能。企业员工可以通过自然语言输入,查收到对应的可视化图表并实现下钻分析,实现数据分析效率的提升。

但在企业具体的实践中,重新学习输入 prompt(提示),并不能为专业的分析师“减负”;而对 BI 工具不精通的员工,在使用这类能力时,又会遇到如何选择数据集等“专业”难题。

同时,笼统的分析助手无法理解不同行业与业务中的“黑话”,不理解使用者的真实意图,从而大幅降低分析准确性。

“Data Fabric 驱动下的 ChatBI 智能体”解决方案,正在试图解决上述这些问题:通过构建完整的智能数据服务体系,打破数据“专业”壁垒,帮助企业内每个业务都能定制专属智能体,持续降低数据使用门槛,提升大模型能力下的数据反馈效率和准确率。

在这套解决方案中, Data Fabric 通过语义层和数据模型的整合,重构了数据生产关系,在显著降低数据存储和计算成本的基础上,让数据服务变得更加敏捷;而 ChatBI 智能体则能更贴合业务个性化需求,通过交互理解、数据访问、分析推理和结果生成四大模块,极大提升业务员工的数据生产力,让数据消费变得更加简单直接。

数据显示,在字节跳动内部,这套方案已覆盖超 200 个分析场景,每天处理 10 万余次分析请求,平均分析时间降低了 80%,数据开发和运维成本也大幅下降。

数据资产的新生力:多模态数据湖

如果说“Data Fabric 驱动下的 ChatBI 智能体”解决方案,是火山引擎数智平台持续在服务企业过程中,不断洞察新的业务需求,实现的“数据+AI”能力沉淀和升级。那么“多模态数据湖”解决方案的诞生,则更像他们洞见当下企业即将遇到的问题时,所作出的敏捷反应。

LLM 的大热,让企业对于 AI 赋能的数字化满怀憧憬,众多企业投身大模型于业务场景的落地实践。然而技术魅力与现实困境共生,大模型催生的图像、视频、音频等海量多模态数据正在挑战传统湖仓技术。

传统的结构化数据处理,无法满足当下对多模态数据的存储、计算,也无法挖掘出这部分数据背后的资产价值。

在深度参与大模型产业的同时,火山引擎数智平台亦敏锐感知到了非结构数据变现成企业核心数据资产的意义。

多模态数据湖解决方案,应运而生。

火山引擎多模态数据湖解决方案

火山引擎数据飞轮 2.0 所推出的多模态数据湖解决方案,可实现海量结构化、半结构化及非结构化数据的统一精细化管理,全方位兼容各类数据格式,为 LLM 预训练、持续训练和微调全程各个环节提供更好的数据支持。

从数据源来看,火山引擎多模态数据湖方案可实现各类数据的统一管理;在算子处理方面,该方案提供了 100 多种开箱即用的非结构数据处理算子;在多元异构计算上,方案提供了 CPU+GPU 异构计算,能让数据计算提效 3 倍以上。

目前,该解决方案已广泛应用在泛互联网、汽车等行业,并取得实效。

以聚焦于智能网联汽车的某科创公司为例,最初该公司使用自建开源大数据平台支撑车联网数据采集、加工及分析,但存在实时离线数据割裂、数据膨胀、系统稳定性低等问题。

通过引入火山引擎多模态数据湖解决方案,该公司将火山引擎 E-MapReduce 作为数据湖 OLAP 引擎,构建兼具离线、实时的湖仓一体架构,并运用其存算分离架构应对高膨胀增量数据,在确保计算性能 SLA 稳定的同时,成功将维护成本降为零;

还进一步借助全域数据集成 DataSail 实现 OLAP、OLTP 两种不同负载要求的任务分离,保障了服务的可用性。最终在数据处理实效性提升为秒级的基础上,资源成本还降低了 30%。

技术之外,能力的培养至关重要

数据飞轮 2.0 模式的诞生,不仅仅是火山引擎在当下技术变革的顶层设计进化。它更是来自字节跳动内部的数据驱动、AI 实践经验的再次总结。

事实上,目前火山引擎数据飞轮 2.0 模式提供给企业客户的能力,均已在字节跳动内部进行了长期的沉淀与优化。

比如,多个业务线搭建了专属 ChatBI 智能体,数据显示,基于 ChatBI 智能体,业务用户可自闭环完成“从业务问题到数据问题”的诊断和分析,数据自助分析率达 90%。

再比如,另一款数智产品增长营销平台 GMP 所提供的创意助手能力,生成营销内容 80%可以无需人工干预直接投放。

经由内部的充分实践,火山引擎数据飞轮 2.0 模式已经积累丰富的场景经验。这些技术之外的经验能力,亦是飞轮 2.0 模式能运行良好的重要保障。

因此,除了能力与方案的发布外,火山引擎在本次大会上也发布了“数据飞轮 2.0 加速计划”,不仅为想要尝试新能力的企业提供为期 3 个月的免费试用,更为需要深度挖掘数据飞轮 2.0 场景的企业,提供了最多 3 个月周期的免费项目制陪跑服务。

在为企业提供工具能力的同时,更要向企业传递方法与经验。

据了解,该陪跑服务涵盖了企业大模型数据应用方案规划、企业 Data+AI 能力培育、业务陪跑等多个方面,目的是帮助企业用更短时间,更快构建并高效运行数据飞轮 2.0,实现业务价值提升。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/493417.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LLaMA-Factory 单卡3080*2 deepspeed zero3 微调Qwen2.5-7B-Instruct

环境安装 git clone https://gitcode.com/gh_mirrors/ll/LLaMA-Factory.git 下载模型 pip install modelscope modelscope download --model Qwen/Qwen2.5-7B-Instruct --local_dir /root/autodl-tmp/models/Qwen/Qwen2.5-7B-Instruct 微调 llamafactory-cli train \--st…

合并比对学习资料

目录 ContractComparison已开源: ContractComparison已开源: GitHub - UnstoppableCurry/ContractComparison: Comparison of General Chinese Contracts with OCR Pytorch

全速下载 50M/S,不限速下载就是香

近几年来虽说各大网盘层出不穷,各有乾坤,而这其中某些网盘对于网速限制非常严重,这也是很多小伙伴一直吐槽的点,并且某些网盘下载文件还需要安装客户端,并且每家的限速方式不同,有的限速取决于文件大小&…

回归预测 | MATLAB实现CNN-BiGRU-Attention卷积神经网络结合双向门控循环单元融合注意力机制多输入单输出回归预测

回归预测 | MATLAB实现CNN-BiGRU-Attention卷积神经网络结合双向门控循环单元融合注意力机制多输入单输出回归预测 目录 回归预测 | MATLAB实现CNN-BiGRU-Attention卷积神经网络结合双向门控循环单元融合注意力机制多输入单输出回归预测预测效果基本介绍程序设计参考资料 预测效…

RunCam WiFiLink连接手机图传测试

RunCam WiFiLink中文手册从这里下载 一、摄像头端 1.连接天线(易忘) 2.打开摄像头前面的盖子(易忘) 3.接上直流电源,红线为正,黑线为负 4.直流电源设置电压为14v,电流为3.15A, 通…

AI的进阶之路:从机器学习到深度学习的演变(二)

AI的进阶之路:从机器学习到深度学习的演变(一) 三、机器学习(ML):AI的核心驱动力 3.1 机器学习的核心原理 机器学习(Machine Learning, ML)突破了传统编程的局限,它不再…

WordPress 去除?v= 动态后缀

Wordpress url后面带有?vxxx的参数符,这种现象出现在安装了Woocommerce插件的店铺类型站点上,参数的作用是帮助系统根据用户的geographic定位计算 tax and shipping fee。 如何删除? 后台进入WooCommerce Settings ,将根据IP定…

Spring Cloud Gateway 源码

Spring Cloud Gateway 架构图 按照以上架构图,请求的处理流程: 1.客户端请求发送到网关 DispatcherHandler 2.网关通过 HandlerMapping 找到相应的 WebHandler 3.WebHandler生成FilterChain过滤器链执行所有的过滤器 4.返回Response结果 自动装配类Gat…

数据结构漫游记:初识vector

​ 嘿,各位技术潮人!好久不见甚是想念。生活就像一场奇妙冒险,而编程就是那把超酷的万能钥匙。此刻,阳光洒在键盘上,灵感在指尖跳跃,让我们抛开一切束缚,给平淡日子加点料,注入满满的…

go-zero负载均衡实现原理

1. 什么是负载均衡 关于微服务分布式及集群的概念即定义,在业界中这些往往会同时在同一个项目中,而集群在微服务中主要为服务的运行保障高可用。 比如:在当前的项目情况下,我们可能针对用户服务部署两台服务以保障用户服务的高可用…

【Rust自学】4.4. 引用与借用

4.4.0 写在正文之前 这一节的内容其实就相当于C的智能指针移动语义在编译器层面做了一些约束。Rust中引用的写法通过编译器的约束写成了C中最理想、最规范的指针写法。所以学过C的人对这一章肯定会非常熟悉。 喜欢的话别忘了点赞、收藏加关注哦(加关注即可阅读全文…

Apache Solr RCE(CVE-2017-12629)--vulhub

Apache Solr 远程命令执行漏洞(CVE-2017-12629) Apache Solr 是一个开源的搜索服务器。Solr 使用 Java 语言开发,主要基于 HTTP 和 Apache Lucene 实现。原理大致是文档通过Http利用XML加到一个搜索集合中。查询该集合也是通过 http收到一个…

OpenGL ES 01 渲染一个四边形

项目架构 着色器封装 vertex #version 300 es // 接收顶点数据 layout (location 0) in vec3 aPos; // 位置变量的属性位置值为0 layout (location 1) in vec4 aColors; // 位置变量的属性位置值为1 out vec4 vertexColor; // 为片段着色器指定一个颜色输出void main() {gl…

游戏渠道假量解决方案

某推广公司在推广过程中被查出“短期内点击量激增”“存在同一地址多次访问”“已注册用户重复注册”等数据作弊行为,法院判罚退还服务费200余万元,并赔偿违约金约350万元。 某公司为提升其游戏在应用商店榜单排名,委托某网络公司进行下载、注…

物联网:全面概述、架构、应用、仿真工具、挑战和未来方向

中文论文标题:物联网:全面概述、架构、应用、仿真工具、挑战和未来方向 英文论文标题:Internet of Things: a comprehensive overview, architectures, applications, simulation tools, challenges and future directions 作者信息&#x…

29、基于springboot的网上购物商城系统研发

本课题是根据用户的需要以及网络的优势建立的一个基于Spring Boot的网上购物商城系统,来满足用户网络购物的需求。 本网上购物商城系统应用Java技术,MYSQL数据库存储数据,基于Spring Boot框架开发。在网站的整个开发过程中,首先对…

Spring Boot--06--整合Swagger

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 Swagger一、简介官网:https://swagger.io/ Swagger 的优势 二、基本使用1. 导入相关依赖2. 编写配置文件2.1 配置基本信息2.2 配置接口信息2.3 配置分组…

写SQL太麻烦?免费搭建 Text2SQL 应用,智能写 SQL | OceanBase AI 实践

自OceanBase 4.3.3版本推出以来,向量检索的能力受到了很多客户的关注,也纷纷表达希望OB能拓展更多 多模数据库大模型 的AI应用实践。 在上篇文章 👉 OceanBase LLM,免费构建你的专属 AI 助手 ,我们介绍了如何去搭建一…

题海拾贝:力扣 86.分隔链表

Hello大家好&#xff01;很高兴我们又见面啦&#xff01;给生活添点passion&#xff0c;开始今天的编程之路&#xff01; 我的博客&#xff1a;<但凡. 我的专栏&#xff1a;《编程之路》、《数据结构与算法之美》、《题海拾贝》 欢迎点赞&#xff0c;关注&#xff01; 1、题…

sql server索引优化语句

第一步 建一个测试表 --create table TestUsers --( -- Id int primary key identity(1,1), -- Username varchar(30) not null, -- Password varchar(10) not null, -- CreateDateTime datetime not null --)第二步 插入100w数据 大概1分钟执行时间 ----插入数据…