代码随想录Day37 动态规划:完全背包理论基础,518.零钱兑换II,本周小结动态规划,377. 组合总和 Ⅳ,70. 爬楼梯(进阶版)。

1.完全背包理论基础

思路

完全背包

有N件物品和一个最多能背重量为W的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品都有无限个(也就是可以放入背包多次),求解将哪些物品装入背包里物品价值总和最大。

完全背包和01背包问题唯一不同的地方就是,每种物品有无限件

背包最大重量为4。

物品为:

重量价值
物品0115
物品1320
物品2430

每件商品都有无限个!

问背包能背的物品最大价值是多少?

01背包和完全背包唯一不同就是体现在遍历顺序上,所以本文就不去做动规五部曲了,我们直接针对遍历顺序经行分析!

关于01背包我如下两篇已经进行深入分析了:

  • 动态规划:关于01背包问题,你该了解这些!(opens new window)
  • 动态规划:关于01背包问题,你该了解这些!(滚动数组)

01背包内嵌的循环是从大到小遍历,为了保证每个物品仅被添加一次。

而完全背包的物品是可以添加多次的,所以要从小到大去遍历

在动态规划:关于01背包问题,你该了解这些!(滚动数组) (opens new window)中也做了讲解。

dp状态图如下:

动态规划-完全背包

相信很多同学看网上的文章,关于完全背包介绍基本就到为止了。

其实还有一个很重要的问题,为什么遍历物品在外层循环,遍历背包容量在内层循环?

这个问题很多题解关于这里都是轻描淡写就略过了,大家都默认 遍历物品在外层,遍历背包容量在内层,好像本应该如此一样,那么为什么呢?

难道就不能遍历背包容量在外层,遍历物品在内层?

看过这两篇的话:

  • 动态规划:关于01背包问题,你该了解这些!(opens new window)
  • 动态规划:关于01背包问题,你该了解这些!(滚动数组)(opens new window)

就知道了,01背包中二维dp数组的两个for遍历的先后循序是可以颠倒了,一维dp数组的两个for循环先后循序一定是先遍历物品,再遍历背包容量。

在完全背包中,对于一维dp数组来说,其实两个for循环嵌套顺序是无所谓的!

因为dp[j] 是根据 下标j之前所对应的dp[j]计算出来的。 只要保证下标j之前的dp[j]都是经过计算的就可以了。

遍历物品在外层循环,遍历背包容量在内层循环,状态如图:

动态规划-完全背包1

遍历背包容量在外层循环,遍历物品在内层循环,状态如图:

动态规划-完全背包2

看了这两个图,大家就会理解,完全背包中,两个for循环的先后循序,都不影响计算dp[j]所需要的值(这个值就是下标j之前所对应的dp[j])。

总结

对于纯完全背包问题,其for循环的先后循环是可以颠倒的!

先遍历物品,再遍历背包

public class Complete_Knapsack_Problem {//先遍历物品,再遍历背包private static void testCompletePack(){int[] weight = {1, 3, 4};//定义了三种物品,它们的重量分别是1、3、4,对应的价值分别是15、20、30。int[] value = {15, 20, 30};int bagWeight = 4;//背包的总容量是4。int[] dp = new int[bagWeight + 1];//dp数组用于存储每个容量下的最大价值。数组的大小是背包容量加1,因为容量从0开始。for (int i = 0; i < weight.length; i++){//外层循环遍历所有物品,内层循环遍历所有可能的背包容量。对于每个物品i和每个容量j,我们考虑两种情况:不取当前物品,那么当前容量下的最大价值仍然是dp[j]。取当前物品,那么当前容量下的最大价值是dp[j - weight[i]] + value[i],即取走当前物品后剩余容量下的最大价值加上当前物品的价值。for (int j = weight[i]; j <= bagWeight; j++){dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i]);//比较了这两种情况,取两者的最大值作为当前容量下的最大价值。}}for (int maxValue : dp){//遍历dp数组,输出每个容量下的最大价值。System.out.println(maxValue + "   ");}}}
  • 时间复杂度:两种方法的时间复杂度都是 𝑂(𝑛×𝑏𝑎𝑔𝑊𝑒𝑖𝑔ℎ𝑡)O(n×bagWeight)。
  • 空间复杂度:两种方法的空间复杂度都是 𝑂(𝑏𝑎𝑔𝑊𝑒𝑖𝑔ℎ𝑡)O(bagWeight)

先遍历背包,再遍历物品

public class Complete_Knapsack_Problem {//先遍历背包,再遍历物品private static void testCompletePackAnotherWay(){int[] weight = {1, 3, 4};int[] value = {15, 20, 30};int bagWeight = 4;int[] dp = new int[bagWeight + 1];for (int i = 1; i <= bagWeight; i++){//外层循环是遍历所有可能的背包容量,从1开始到背包的最大容量。内层循环遍历所有物品。对于每个容量i和每个物品j,我们检查当前容量是否足够放下这个物品(即i - weight[j] >= 0)。如果足够,我们考虑两种情况:不取当前物品,那么当前容量下的最大价值仍然是dp[i]。取当前物品,那么当前容量下的最大价值是dp[i - weight[j]] + value[j],即取走当前物品后剩余容量下的最大价值加上当前物品的价值。for (int j = 0; j < weight.length; j++){if (i - weight[j] >= 0){dp[i] = Math.max(dp[i], dp[i - weight[j]] + value[j]);//较了这两种情况,取两者的最大值作为当前容量下的最大价值。}}}for (int maxValue : dp){//遍历dp数组,输出每个容量下的最大价值。System.out.println(maxValue + "   ");}}
}
  • 时间复杂度:两种方法的时间复杂度都是 𝑂(𝑛×𝑏𝑎𝑔𝑊𝑒𝑖𝑔ℎ𝑡)O(n×bagWeight)。
  • 空间复杂度:两种方法的空间复杂度都是 𝑂(𝑏𝑎𝑔𝑊𝑒𝑖𝑔ℎ𝑡)O(bagWeight)

2.零钱兑换II

力扣题目链接(opens new window)

给定不同面额的硬币和一个总金额。写出函数来计算可以凑成总金额的硬币组合数。假设每一种面额的硬币有无限个。

示例 1:

  • 输入: amount = 5, coins = [1, 2, 5]
  • 输出: 4

解释: 有四种方式可以凑成总金额:

  • 5=5
  • 5=2+2+1
  • 5=2+1+1+1
  • 5=1+1+1+1+1

示例 2:

  • 输入: amount = 3, coins = [2]
  • 输出: 0
  • 解释: 只用面额2的硬币不能凑成总金额3。

示例 3:

  • 输入: amount = 10, coins = [10]
  • 输出: 1

注意,你可以假设:

  • 0 <= amount (总金额) <= 5000
  • 1 <= coin (硬币面额) <= 5000
  • 硬币种类不超过 500 种
  • 结果符合 32 位符号整数

思路

这是一道典型的背包问题,一看到钱币数量不限,就知道这是一个完全背包。

对完全背包还不了解的同学,可以看这篇:动态规划:关于完全背包,你该了解这些!(opens new window)

但本题和纯完全背包不一样,纯完全背包是凑成背包最大价值是多少,而本题是要求凑成总金额的物品组合个数!

注意题目描述中是凑成总金额的硬币组合数,为什么强调是组合数呢?

例如示例一:

5 = 2 + 2 + 1

5 = 2 + 1 + 2

这是一种组合,都是 2 2 1。

如果问的是排列数,那么上面就是两种排列了。

组合不强调元素之间的顺序,排列强调元素之间的顺序。 其实这一点我们在讲解回溯算法专题的时候就讲过了哈。

动规五步曲来分析如下:

  1. 确定dp数组以及下标的含义

dp[j]:凑成总金额j的货币组合数为dp[j]

  1. 确定递推公式

dp[j] 就是所有的dp[j - coins[i]](考虑coins[i]的情况)相加。

所以递推公式:dp[j] += dp[j - coins[i]];

这个递推公式大家应该不陌生了,我在讲解01背包题目的时候在这篇494. 目标和 (opens new window)中就讲解了,求装满背包有几种方法,公式都是:dp[j] += dp[j - nums[i]];

  1. dp数组如何初始化

首先dp[0]一定要为1,dp[0] = 1是 递归公式的基础。如果dp[0] = 0 的话,后面所有推导出来的值都是0了。

那么 dp[0] = 1 有没有含义,其实既可以说 凑成总金额0的货币组合数为1,也可以说 凑成总金额0的货币组合数为0,好像都没有毛病。

但题目描述中,也没明确说 amount = 0 的情况,结果应该是多少。

这里我认为题目描述还是要说明一下,因为后台测试数据是默认,amount = 0 的情况,组合数为1的。

下标非0的dp[j]初始化为0,这样累计加dp[j - coins[i]]的时候才不会影响真正的dp[j]

dp[0]=1还说明了一种情况:如果正好选了coins[i]后,也就是j-coins[i] == 0的情况表示这个硬币刚好能选,此时dp[0]为1表示只选coins[i]存在这样的一种选法。

  1. 确定遍历顺序

本题中我们是外层for循环遍历物品(钱币),内层for遍历背包(金钱总额),还是外层for遍历背包(金钱总额),内层for循环遍历物品(钱币)呢?

我在动态规划:关于完全背包,你该了解这些! (opens new window)中讲解了完全背包的两个for循环的先后顺序都是可以的。

但本题就不行了!

因为纯完全背包求得装满背包的最大价值是多少,和凑成总和的元素有没有顺序没关系,即:有顺序也行,没有顺序也行!

而本题要求凑成总和的组合数,元素之间明确要求没有顺序。

所以纯完全背包是能凑成总和就行,不用管怎么凑的。

本题是求凑出来的方案个数,且每个方案个数是为组合数。

那么本题,两个for循环的先后顺序可就有说法了。

我们先来看 外层for循环遍历物品(钱币),内层for遍历背包(金钱总额)的情况。

这种遍历顺序中dp[j]里计算的是组合数!

如果把两个for交换顺序

此时dp[j]里算出来的就是排列数!

可能这里很多同学还不是很理解,建议动手把这两种方案的dp数组数值变化打印出来,对比看一看!(实践出真知)

  1. 举例推导dp数组

输入: amount = 5, coins = [1, 2, 5] ,dp状态图如下:

518.零钱兑换II

最后红色框dp[amount]为最终结果。

总结

本题的递推公式,其实我们在494. 目标和 (opens new window)中就已经讲过了,而难点在于遍历顺序!

在求装满背包有几种方案的时候,认清遍历顺序是非常关键的。

如果求组合数就是外层for循环遍历物品,内层for遍历背包

public class Change_Making_ProblemII {public int change1(int amount, int[] coins) {//接受两个参数:amount表示需要兑换的总金额,coins是一个数组,包含了可用的硬币面额。int[] dp = new int[amount + 1];//dp数组用于存储到达每个金额的不同组合数。数组的大小是amount + 1,因为金额从0开始。dp[0]被初始化为1,表示有1种方式可以组成金额0(即不使用任何硬币)。dp[0] = 1;for (int i = 0; i < coins.length; i++) {//外层循环遍历所有硬币面额,内层循环遍历从当前硬币面额到总金额的所有可能金额。对于每个硬币面额coins[i]和每个金额j,我们更新dp[j]的值,增加dp[j - coins[i]]的值。这是因为如果我们已经有了组成j - coins[i]金额的方法,那么我们可以通过添加一个coins[i]面额的硬币来组成j金额。for (int j = coins[i]; j <= amount; j++) {dp[j] += dp[j - coins[i]];//dp[j]的值是组成j金额的方法数和组成j - coins[i]金额的方法数之和。}}return dp[amount];//返回dp[amount]的值,即组成总金额amount的不同组合数。}}
  • 时间复杂度:O(amount * coins.length)
  • 空间复杂度:O(amount)

如果求排列数就是外层for遍历背包,内层for循环遍历物品

public class Change_Making_ProblemII {public int change2(int amount, int[] coins) {//接受两个参数:amount表示需要兑换的总金额,coins是一个数组,包含了可用的硬币面额。int[][] dp = new int[coins.length][amount+1];//dp[i][j]表示使用前i种硬币组成金额j的不同组合数。数组的大小是coins.length乘以amount+1。初始化时,对于所有的硬币组合,组成金额0的组合数为1(即不使用任何硬币),所以dp[i][0]被初始化为1。for(int i = 0; i < coins.length; i++){dp[i][0] = 1;}for(int j = coins[0]; j <= amount; j++){//处理第一个硬币的特殊情况。由于第一个硬币可以无限使用,我们可以直接将dp[0][j]的值更新为dp[0][j-coins[0]]的值,这样就可以累加使用一个或多个第一个硬币面额的硬币组成金额j的组合数。dp[0][j] += dp[0][j-coins[0]];}for(int i = 1; i < coins.length; i++){//外层循环遍历所有硬币面额(从第二个硬币开始),内层循环遍历从1到总金额的所有可能金额。对于每个硬币面额i和每个金额j,我们考虑两种情况:如果j小于当前硬币面额coins[i],则不能使用这个硬币,所以dp[i][j]的值与dp[i-1][j]相同。如果j大于或等于当前硬币面额coins[i],则有两种选择:不使用当前硬币,dp[i][j]的值与dp[i-1][j]相同;或者使用至少一个当前硬币,dp[i][j]的值是dp[i][j-coins[i]](使用一个当前硬币)和dp[i-1][j](不使用当前硬币)的和。for(int j = 1; j <= amount; j++){if(j < coins[i]) dp[i][j] = dp[i-1][j];else dp[i][j] = dp[i][j-coins[i]] + dp[i-1][j];}}return dp[coins.length-1][amount];//函数返回dp[coins.length-1][amount]的值,即使用所有硬币组成总金额amount的不同组合数。}}
  • 时间复杂度:O(amount * coins.length)

  • 空间复杂度:O(coins.length * amount)

3.本周小结动态规划

周一

动态规划:目标和! (opens new window)要求在数列之间加入+ 或者 -,使其和为S。

所有数的总和为sum,假设加法的总和为x,那么可以推出x = (S + sum) / 2。

S 和 sum都是固定的,那此时问题就转化为01背包问题(数列中的数只能使用一次): 给你一些物品(数字),装满背包(就是x)有几种方法。

  1. 确定dp数组以及下标的含义

dp[j] 表示:填满j(包括j)这么大容积的包,有dp[j]种方法

  1. 确定递推公式

dp[j] += dp[j - nums[i]]

注意:求装满背包有几种方法类似的题目,递推公式基本都是这样的

  1. dp数组如何初始化

dp[0] 初始化为1 ,dp[j]其他下标对应的数值应该初始化为0。

  1. 确定遍历顺序

01背包问题一维dp的遍历,nums放在外循环,target在内循环,且内循环倒序。

  1. 举例推导dp数组

输入:nums: [1, 1, 1, 1, 1], S: 3

bagSize = (S + sum) / 2 = (3 + 5) / 2 = 4

dp数组状态变化如下:

494.目标和

周二

这道题目动态规划:一和零! (opens new window)算有点难度。

不少同学都以为是多重背包,其实这是一道标准的01背包

这不过这个背包有两个维度,一个是m 一个是n,而不同长度的字符串就是不同大小的待装物品。

所以这是一个二维01背包!

  1. 确定dp数组(dp table)以及下标的含义

dp[i][j]:最多有i个0和j个1的strs的最大子集的大小为dp[i][j]。

  1. 确定递推公式

dp[i][j] = max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1);

字符串集合中的一个字符串0的数量为zeroNum,1的数量为oneNum。

  1. dp数组如何初始化

因为物品价值不会是负数,初始为0,保证递推的时候dp[i][j]不会被初始值覆盖。

  1. 确定遍历顺序

01背包一定是外层for循环遍历物品,内层for循环遍历背包容量且从后向前遍历!

  1. 举例推导dp数组

以输入:["10","0001","111001","1","0"],m = 3,n = 3为例

最后dp数组的状态如下所示:

474.一和零

周三

此时01背包我们就讲完了,正式开始完全背包。

在动态规划:关于完全背包,你该了解这些! (opens new window)中我们讲解了完全背包的理论基础。

其实完全背包和01背包区别就是完全背包的物品是无限数量。

递推公式也是一样的,但难点在于遍历顺序上!

完全背包的物品是可以添加多次的,所以遍历背包容量要从小到大去遍历

那么为什么要先遍历物品,在遍历背包呢? (灵魂拷问)

其实对于纯完全背包,先遍历物品,再遍历背包 与 先遍历背包,再遍历物品都是可以的。我在文中动态规划:关于完全背包,你该了解这些! (opens new window)也给出了详细的解释。

这个细节是很多同学忽略掉的点,其实也不算细节了,相信不少同学在写背包的时候,两层for循环的先后循序搞不清楚,靠感觉来的

所以理解究竟是先遍历啥,后遍历啥非常重要,这也体现出遍历顺序的重要性!

在文中,我也强调了是对纯完全背包,两个for循环先后循序无所谓,那么题目稍有变化,可就有所谓了。

周四

在动态规划:给你一些零钱,你要怎么凑? (opens new window)中就是给你一堆零钱(零钱个数无限),为凑成amount的组合数有几种。

注意这里组合数和排列数的区别!

看到无限零钱个数就知道是完全背包,

但本题不是纯完全背包了(求是否能装满背包),而是求装满背包有几种方法。

这里在遍历顺序上可就有说法了。

  • 如果求组合数就是外层for循环遍历物品,内层for遍历背包。
  • 如果求排列数就是外层for遍历背包,内层for循环遍历物品。

总结

介绍关于动态规划,你该了解这些! (opens new window)中就强调了 递推公式仅仅是 动规五部曲里的一小部分, dp数组的定义、初始化、遍历顺序,哪一点没有搞透的话,即使知道递推公式,遇到稍稍难一点的动规题目立刻会感觉写不出来了

4.组合总和 Ⅳ

力扣题目链接(opens new window)

难度:中等

给定一个由正整数组成且不存在重复数字的数组,找出和为给定目标正整数的组合的个数。

示例:

  • nums = [1, 2, 3]
  • target = 4

所有可能的组合为: (1, 1, 1, 1) (1, 1, 2) (1, 2, 1) (1, 3) (2, 1, 1) (2, 2) (3, 1)

请注意,顺序不同的序列被视作不同的组合。

因此输出为 7。

思路

对完全背包还不了解的同学,可以看这篇:动态规划:关于完全背包,你该了解这些!(opens new window)

本题题目描述说是求组合,但又说是可以元素相同顺序不同的组合算两个组合,其实就是求排列!

弄清什么是组合,什么是排列很重要。

组合不强调顺序,(1,5)和(5,1)是同一个组合。

排列强调顺序,(1,5)和(5,1)是两个不同的排列。

大家在公众号里学习回溯算法专题的时候,一定做过这两道题目回溯算法:39.组合总和 (opens new window)和回溯算法:40.组合总和II (opens new window)会感觉这两题和本题很像!

但其本质是本题求的是排列总和,而且仅仅是求排列总和的个数,并不是把所有的排列都列出来。

如果本题要把排列都列出来的话,只能使用回溯算法爆搜

动规五部曲分析如下:

  1. 确定dp数组以及下标的含义

dp[i]: 凑成目标正整数为i的排列个数为dp[i]

  1. 确定递推公式

dp[i](考虑nums[j])可以由 dp[i - nums[j]](不考虑nums[j]) 推导出来。

因为只要得到nums[j],排列个数dp[i - nums[j]],就是dp[i]的一部分。

在动态规划:494.目标和 (opens new window)和 动态规划:518.零钱兑换II (opens new window)中我们已经讲过了,求装满背包有几种方法,递推公式一般都是dp[i] += dp[i - nums[j]];

本题也一样。

  1. dp数组如何初始化

因为递推公式dp[i] += dp[i - nums[j]]的缘故,dp[0]要初始化为1,这样递归其他dp[i]的时候才会有数值基础。

至于dp[0] = 1 有没有意义呢?

其实没有意义,所以我也不去强行解释它的意义了,因为题目中也说了:给定目标值是正整数! 所以dp[0] = 1是没有意义的,仅仅是为了推导递推公式。

至于非0下标的dp[i]应该初始为多少呢?

初始化为0,这样才不会影响dp[i]累加所有的dp[i - nums[j]]。

  1. 确定遍历顺序

个数可以不限使用,说明这是一个完全背包。

得到的集合是排列,说明需要考虑元素之间的顺序。

本题要求的是排列,那么这个for循环嵌套的顺序可以有说法了。

在动态规划:518.零钱兑换II (opens new window)中就已经讲过了。

如果求组合数就是外层for循环遍历物品,内层for遍历背包

如果求排列数就是外层for遍历背包,内层for循环遍历物品

如果把遍历nums(物品)放在外循环,遍历target的作为内循环的话,举一个例子:计算dp[4]的时候,结果集只有 {1,3} 这样的集合,不会有{3,1}这样的集合,因为nums遍历放在外层,3只能出现在1后面!

所以本题遍历顺序最终遍历顺序:target(背包)放在外循环,将nums(物品)放在内循环,内循环从前到后遍历

  1. 举例来推导dp数组

我们再来用示例中的例子推导一下:

377.组合总和Ⅳ

如果代码运行处的结果不是想要的结果,就把dp[i]都打出来,看看和我们推导的一不一样。

总结

求装满背包有几种方法,递归公式都是一样的,没有什么差别,但关键在于遍历顺序!

本题与动态规划:518.零钱兑换II (opens new window)就是一个鲜明的对比,一个是求排列,一个是求组合,遍历顺序完全不同。

public class Combination_SumIV {public int combinationSum4(int[] nums, int target) {//nums是一个整数数组,包含了候选数字,target是需要达到的目标数字。int[] dp = new int[target + 1];//dp数组用于存储达到每个金额的不同组合数。数组的大小是target + 1,因为金额从0开始。dp[0]被初始化为1,表示有1种方式可以组成金额0(即不使用任何数字)。dp[0] = 1;for (int i = 0; i <= target; i++) {//外层循环遍历从0到target的所有可能金额,内层循环遍历所有候选数字。对于每个金额i和每个候选数字nums[j],如果i大于等于nums[j],则可以考虑使用这个数字来组成金额i。具体来说,如果使用数字nums[j]来组成金额i,那么组成金额i的组合数就是组成金额i - nums[j]的组合数加到dp[i]上。这是因为每个dp[i - nums[j]]代表了一个有效的组合,我们只需将nums[j]添加到这些组合中即可形成新的组合。for (int j = 0; j < nums.length; j++) {if (i >= nums[j]) {dp[i] += dp[i - nums[j]];}}}return dp[target];//返回dp[target]的值,即所有加和等于目标数target的组合数量。}
}
  • 时间复杂度为O(target * nums.length)
  • 空间复杂度为O(target)

5.爬楼梯(进阶版)

卡码网:57. 爬楼梯(opens new window)

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬至多m (1 <= m < n)个台阶。你有多少种不同的方法可以爬到楼顶呢?

注意:给定 n 是一个正整数。

输入描述:输入共一行,包含两个正整数,分别表示n, m

输出描述:输出一个整数,表示爬到楼顶的方法数。

输入示例:3 2

输出示例:3

提示:

当 m = 2,n = 3 时,n = 3 这表示一共有三个台阶,m = 2 代表你每次可以爬一个台阶或者两个台阶。

此时你有三种方法可以爬到楼顶。

  • 1 阶 + 1 阶 + 1 阶段
  • 1 阶 + 2 阶
  • 2 阶 + 1 阶

思路

之前讲这道题目的时候,因为还没有讲背包问题,所以就只是讲了一下爬楼梯最直接的动规方法(斐波那契)。

这次终于讲到了背包问题,我选择带录友们再爬一次楼梯!

这道题目 我们在动态规划:爬楼梯 (opens new window)中已经讲过一次了,这次我又给本题加点料,力扣上没有原题,所以可以在卡码网57. 爬楼梯 (opens new window)上来刷这道题目。

我们之前做的 爬楼梯 是只能至多爬两个台阶。

这次改为:一步一个台阶,两个台阶,三个台阶,.......,直到 m个台阶。问有多少种不同的方法可以爬到楼顶呢?

这又有难度了,这其实是一个完全背包问题。

1阶,2阶,.... m阶就是物品,楼顶就是背包。

每一阶可以重复使用,例如跳了1阶,还可以继续跳1阶。

问跳到楼顶有几种方法其实就是问装满背包有几种方法。

此时大家应该发现这就是一个完全背包问题了!

和昨天的题目动态规划:377. 组合总和 Ⅳ (opens new window)基本就是一道题了。

动规五部曲分析如下:

  1. 确定dp数组以及下标的含义

dp[i]:爬到有i个台阶的楼顶,有dp[i]种方法

  1. 确定递推公式

在动态规划:494.目标和 (opens new window)、 动态规划:518.零钱兑换II (opens new window)、动态规划:377. 组合总和 Ⅳ (opens new window)中我们都讲过了,求装满背包有几种方法,递推公式一般都是dp[i] += dp[i - nums[j]];

本题呢,dp[i]有几种来源,dp[i - 1],dp[i - 2],dp[i - 3] 等等,即:dp[i - j]

那么递推公式为:dp[i] += dp[i - j]

  1. dp数组如何初始化

既然递归公式是 dp[i] += dp[i - j],那么dp[0] 一定为1,dp[0]是递归中一切数值的基础所在,如果dp[0]是0的话,其他数值都是0了。

下标非0的dp[i]初始化为0,因为dp[i]是靠dp[i-j]累计上来的,dp[i]本身为0这样才不会影响结果

  1. 确定遍历顺序

这是背包里求排列问题,即:1、2 步 和 2、1 步都是上三个台阶,但是这两种方法不一样!

所以需将target放在外循环,将nums放在内循环。

每一步可以走多次,这是完全背包,内循环需要从前向后遍历。

  1. 举例来推导dp数组

介于本题和动态规划:377. 组合总和 Ⅳ (opens new window)几乎是一样的,这里我就不再重复举例了。

总结

如果我来面试的话,我就会先给候选人出一个 本题原题,看其表现,如果顺利写出来,进而在要求每次可以爬[1 - m]个台阶应该怎么写。

顺便再考察一下两个for循环的嵌套顺序,为什么target放外面,nums放里面。

这就能考察对背包问题本质的掌握程度,候选人是不是刷题背公式,一眼就看出来了。

public class Climbing_Stairs_Advanced {public static void main(String [] args){Scanner sc = new Scanner(System.in);//从标准输入流(键盘)读取数据。int m, n;//两个整型变量m和n,分别用于存储硬币的面额种类和需要凑成的金额。while (sc.hasNextInt()) {//使用while循环来不断地从输入中读取数据,直到没有更多的整数输入。hasNextInt()方法用于检查输入中是否还有下一个整数。n = sc.nextInt();//读取下一个整数并赋值给变量n。m = sc.nextInt();//读取下一个整数并赋值给变量m。int[] dp = new int[n + 1];//声明并初始化一个长度为n+1的数组dp,用于存储动态规划的中间结果。数组的索引从0到n,因此长度需要是n+1。dp[0] = 1;//初始化dp[0]为1,表示凑成金额0有一种方式,即不使用任何硬币。for (int j = 1; j <= n; j++) {//外层循环,遍历从1到n的所有金额。for (int i = 1; i <= m; i++) {//内层循环,遍历从1到m的所有硬币面额。if (j - i >= 0) dp[j] += dp[j - i];//如果当前金额j减去硬币面额i的结果非负,说明可以使用面额为i的硬币来凑成金额j。因此,将dp[j-i]的值加到dp[j]上,表示凑成金额j的组合数增加了dp[j-i]种。}}System.out.println(dp[n]);//输出最终结果,即dp[n],表示凑成金额n的不同硬币组合的数量。}}
}
  • 时间复杂度:O(n * m)
  • 空间复杂度:O(n)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/495500.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【多时段】含sop的配电网重构【含分布式电源】【已更新视频讲解】

1 主要内容 之前分享了很多配电网重构的程序&#xff0c;每个程序针对场景限定性比较大&#xff0c;程序初学者修改起来难度较大&#xff0c;本次分享一个基础程序&#xff0c;针对含sop的配电网重构模型&#xff0c;含风电和光伏&#xff0c;优化了33节点网络电压合理性&…

查看php已安装扩展命令

在powershell中查看完整的拓展 php -m 指定搜索某几个拓展 php -m | Select-String -Pattern "xml"

YOLOv11 引入高效的可变形卷积网络 DCNv4 | 重新思考用于视觉应用的动态和稀疏算子

我们介绍了可变形卷积v4(DCNv4),这是一种为广泛的视觉应用设计的高效且有效的算子。DCNv4通过以下两项关键改进解决了其前身DCNv3的局限性: 在空间聚合中移除softmax归一化,以增强其动态特性和表达能力。优化内存访问,减少冗余操作以提高速度。这些改进使得DCNv4相比DCNv…

vue 基础学习

一、ref 和reactive 区别 问题&#xff1a;发生跨域问题 Access to script at file:///Users/new/Desktop/webroot/vue/vue.esm-browser.js from origin null has been blocked by CORS policy: Cross origin requests are only supported for protocol schemes: chrome, chrom…

AIA - IMSIC之二(附IMSIC处理流程图)

本文属于《 RISC-V指令集基础系列教程》之一,欢迎查看其它文章。 1 ​​​​​​​通过IMSIC接收外部中断的CSR 软件通过《AIA - 新增的CSR》描述的CSR来访问IMSIC。 machine level 的 CSR 与 IMSIC 的 machine level interrupt file 可相互互动;而 supervisor level 的 CSR…

光谱相机的工作原理

光谱相机的工作原理主要基于不同物质对不同波长光的吸收、反射和透射特性存在差异&#xff0c;以下是其具体工作过程&#xff1a; 一、光的收集 目标物体在光源照射下&#xff0c;其表面会对光产生吸收、反射和透射等相互作用。光谱相机的光学系统&#xff08;如透镜、反射镜…

Kafka可视化工具 Offset Explorer (以前叫Kafka Tool)

数据的存储是基于 主题&#xff08;Topic&#xff09; 和 分区&#xff08;Partition&#xff09; 的 Kafka是一个高可靠性的分布式消息系统&#xff0c;广泛应用于大规模数据处理和实时, 为了更方便地管理和监控Kafka集群&#xff0c;开发人员和运维人员经常需要使用可视化工具…

TLDR:终端命令的简洁百科全书

TLDR&#xff0c;全称 “Too Long, Don’t Read”&#xff0c;是一款特别实用的终端命令百科全书工具。通过 TLDR&#xff0c;您可以快速查找到常用命令的使用方法&#xff0c;避免繁琐冗长的官方文档&#xff0c;让日常工作更加高效。 为什么选择 TLDR&#xff1f; 简单易用&…

2024-12-25-sklearn学习(20)无监督学习-双聚类 料峭春风吹酒醒,微冷,山头斜照却相迎。

文章目录 sklearn学习(20) 无监督学习-双聚类1 Spectral Co-Clustering1.1 数学公式 2 Spectral Biclustering2.1 数学表示 3 Biclustering 评价 sklearn学习(20) 无监督学习-双聚类 文章参考网站&#xff1a; https://sklearn.apachecn.org/ 和 https://scikit-learn.org/sta…

数据结构(Java版)第六期:LinkedList与链表(一)

目录 一、链表 1.1. 链表的概念及结构 1.2. 链表的实现 专栏&#xff1a;数据结构(Java版) 个人主页&#xff1a;手握风云 一、链表 1.1. 链表的概念及结构 链表是⼀种物理存储结构上⾮连续存储结构&#xff0c;数据元素的逻辑顺序是通过链表中的引⽤链接次序实现的。与火车…

《Java核心技术I》Swing的网格包布局

复杂的布局管理 网格包布局 行列大小可改变&#xff0c;先建立表格&#xff0c;合并相邻单元格&#xff0c;组件指定在格内的对齐方式。 字体选择器组件&#xff1a; 另个指定字体和字体大小的组合框两个组合框标签两个选择粗体和斜体的复选框一个显示示例字符串的文本区 将容…

Python——day09

os模块 sys模块 time模块 logging模块

IIC驱动EEPROM

代码参考正点原子 i2c_dri:主要是三段式状态机的编写 module iic_dri#(parameter SLAVE_ADDR 7b1010000 , //EEPROM从机地址parameter CLK_FREQ 26d50_000_000, //模块输入的时钟频率parameter I2C_FREQ 18d250_000 //IIC_SCL的时钟频率)( …

《计算机组成及汇编语言原理》阅读笔记:p86-p115

《计算机组成及汇编语言原理》学习第 6 天&#xff0c;p86-p115 总结&#xff0c;总计 20 页。 一、技术总结 1.if statement 2.loop 在许多编程语言中&#xff0c;有类种循环&#xff1a;一种是在程序开头检测条件(test the condition),另一种是在程序末尾检测条件。 3.C…

(带源码)宠物主题商场系统 计算机项目 P10083

项目说明 本号所发布的项目均由我部署运行验证&#xff0c;可保证项目系统正常运行&#xff0c;以及提供完整源码。 如需要远程部署/定制/讲解系统&#xff0c;可以联系我。定制项目未经同意不会上传&#xff01; 项目源码获取方式放在文章末尾处 注&#xff1a;项目仅供学…

目标检测——基于yolov8和pyqt的螺栓松动检测系统

目录 1.项目克隆和环境配置1.1 我这里使用的是v8.0.6版本1.2 项目代码结构介绍 2.数据集介绍2.1 数据集采集2.2采集结果介绍 3.模型训练4.pyqt界面设计4.1 界面内容介绍4.2 界面实现 5.操作中的逻辑实现5.1 图片检测5.2 文件夹检测5.3 视频检测和摄像头检测 6. 效果展示 1.项目…

宠物行业的出路:在爱与陪伴中寻找增长新机遇

在当下的消费市场中&#xff0c;如果说有什么领域能够逆势而上&#xff0c;宠物行业无疑是一个亮点。当人们越来越注重生活品质和精神寄托时&#xff0c;宠物成为了许多人的重要伴侣。它们不仅仅是家庭的一员&#xff0c;更是情感的寄托和生活的调剂。然而&#xff0c;随着行业…

原点安全再次入选信通院 2024 大数据“星河”案例

近日&#xff0c;中国信息通信研究院和中国通信标准化协会大数据技术标准推进委员会&#xff08;CCSA TC601&#xff09;共同组织开展的 2024 大数据“星河&#xff08;Galaxy&#xff09;”案例征集活动结果正式公布。由工银瑞信基金管理有限公司、北京原点数安科技有限公司联…

【0x001D】HCI_Read_Remote_Version_Information命令详解

目录 一、命令概述 二、命令格式及参数说明 2.12. HCI_Read_Remote_Version_Information 命令格式 2.2. Connection_Handle 三、生成事件 3.1. HCI_Command_Status 事件 3.2. HCI_Read_Remote_Version_Information_Complete 事件 四、命令执行流程 4.1. 命令发起阶段(…

C语言-结构体内存大小

#include <stdio.h> #include <string.h> struct S1 { char a;//1 int b;//4 char c;//1 }; //分析 默认对齐数 成员对齐数 对齐数(前两个最小值) 最大对齐数 // 8 1 …