音视频入门基础:AAC专题(13)——FFmpeg源码中,获取ADTS格式的AAC裸流音频信息的实现

=================================================================

音视频入门基础:AAC专题系列文章:

音视频入门基础:AAC专题(1)——AAC官方文档下载

音视频入门基础:AAC专题(2)——使用FFmpeg命令生成AAC裸流文件

音视频入门基础:AAC专题(3)——AAC的ADTS格式简介

音视频入门基础:AAC专题(4)——ADTS格式的AAC裸流实例分析

音视频入门基础:AAC专题(5)——FFmpeg源码中,判断某文件是否为AAC裸流文件的实现

音视频入门基础:AAC专题(6)——FFmpeg源码中解码ADTS格式的AAC的Header的实现

音视频入门基础:AAC专题(7)——FFmpeg源码中计算AAC裸流每个packet的size值的实现

音视频入门基础:AAC专题(8)——FFmpeg源码中计算AAC裸流AVStream的time_base的实现

音视频入门基础:AAC专题(9)——FFmpeg源码中计算AAC裸流每个packet的duration和duration_time的实现

音视频入门基础:AAC专题(10)——FFmpeg源码中计算AAC裸流每个packet的pts、dts、pts_time、dts_time的实现

音视频入门基础:AAC专题(11)——AudioSpecificConfig简介

音视频入门基础:AAC专题(12)——FFmpeg源码中,解码AudioSpecificConfig的实现

音视频入门基础:AAC专题(13)——FFmpeg源码中,获取ADTS格式的AAC裸流音频信息的实现

=================================================================

一、引言

对于携带Audio Specific Config的媒体文件,比如音频压缩编码格式为AAC的FLV文件,FFmpeg一般通过解码其Audio Tag中Audio Specific Config获取其音频信息。而通过《音视频入门基础:AAC专题(2)——使用FFmpeg命令生成AAC裸流文件》生成的AAC裸流文件和TS流中的AAC是没有Audio Specific Config的,只有ADTS Header,这时就得通过解码ADTS Header获取其音频信息(音频压缩编码格式的profile、音频采样率、音频声道数、码率等):

 本文讲述FFmpeg源码中,获取ADTS格式的AAC裸流音频信息的实现。

二、音频压缩编码格式

具体获取方法可以参考:《音视频入门基础:AAC专题(5)——FFmpeg源码中,判断某文件是否为AAC裸流文件的实现》

三、音频压缩编码格式的profile

音频压缩编码格式还有附带的profile(规格)。比如,如果音频压缩编码格式为AAC,根据《ISO14496-3-2009.pdf》第124页,还有AAC Main、AAC LC、AAC SSR、AAC LTP这几种规格:

FFmpeg获取AAC裸流的音频压缩编码格式的profile,是根据ADTS Header中的profile_ObjectType属性获取的。由《音视频入门基础:AAC专题(3)——AAC的ADTS格式简介》可以知道,ADTS Header中存在一个占2位的profile_ObjectType属性,表示AAC的规格。

由《音视频入门基础:AAC专题(6)——FFmpeg源码中解码ADTS格式的AAC的Header的实现》可以知道,FFmpeg源码中通过ff_adts_header_parse函数解码ADTS格式的AAC的Header。而ff_adts_header_parse函数中,通过下面语句,将profile_ObjectType属性的值加1赋值给hdr->object_type:

hdr->object_type    = aot + 1;

然后在parse_adts_frame_header函数中,将hdr->object_type赋值给ac->oc[1].m4ac.object_type:

static int parse_adts_frame_header(AACDecContext *ac, GetBitContext *gb)
{
//...size = ff_adts_header_parse(gb, &hdr_info);if (size > 0) {//...ac->oc[1].m4ac.object_type     = hdr_info.object_type;//...}
//...
}

之后,通过aac_decode_frame_int函数将ac->oc[1].m4ac.object_type的值减1赋值给AVCodecContext的profile,这样AVCodecContext的profile就会得到原本的profile_ObjectType属性:

static int aac_decode_frame_int(AVCodecContext *avctx, AVFrame *frame,int *got_frame_ptr, GetBitContext *gb,const AVPacket *avpkt)
{
//...// The AV_PROFILE_AAC_* defines are all object_type - 1// This may lead to an undefined profile being signaledac->avctx->profile = ac->oc[1].m4ac.object_type - 1;
//...
}

然后在dump_stream_format函数中,通过avcodec_string函数中的语句:profile = avcodec_profile_name(enc->codec_id, enc->profile)拿到上一步中得到的AVCodecContext的profile。最后再在dump_stream_format函数中将profile打印出来:

void avcodec_string(char *buf, int buf_size, AVCodecContext *enc, int encode)
{
//...profile = avcodec_profile_name(enc->codec_id, enc->profile);
//...
}

所以FFmpeg获取AAC裸流文件的音频压缩编码格式的profile,获取的是ADTS Header中的profile_ObjectType属性:

四、音频采样率

FFmpeg获取AAC裸流的音频采样频率,是根据ADTS Header中的samplingFrequencyIndex属性获取的。 由《音视频入门基础:AAC专题(3)——AAC的ADTS格式简介》可以知道,ADTS Header中存在一个占4位的samplingFrequencyIndex属性,表示音频采样频率:

ff_adts_header_parse函数中,通过下面语句,将samplingFrequencyIndex属性的值赋值给hdr->sampling_index。将音频采样频率(单位为Hz)赋值给hdr->sample_rate:

    hdr->sampling_index = sr;hdr->sample_rate    = ff_mpeg4audio_sample_rates[sr];

然后在parse_adts_frame_header函数中,将hdr->sample_rate赋值给ac->oc[1].m4ac.sample_rate:

​
static int parse_adts_frame_header(AACDecContext *ac, GetBitContext *gb)
{
//...size = ff_adts_header_parse(gb, &hdr_info);if (size > 0) {//...ac->oc[1].m4ac.sample_rate     = hdr_info.sample_rate;//...}
//...
}​

之后,通过aac_decode_frame_int函数将ac->oc[1].m4ac.sample_rate赋值给AVCodecContext的sample_rate:

static int aac_decode_frame_int(AVCodecContext *avctx, AVFrame *frame,int *got_frame_ptr, GetBitContext *gb,const AVPacket *avpkt)
{
//...if (ac->oc[1].status && audio_found) {avctx->sample_rate = ac->oc[1].m4ac.sample_rate << multiplier;avctx->frame_size = samples;ac->oc[1].status = OC_LOCKED;}
//...
}

然后在dump_stream_format函数中,通过avcodec_string函数中的语句:av_bprintf(&bprint, "%d Hz, ", enc->sample_rate)拿到上一步中得到的AVCodecContext的sample_rate。最后再在dump_stream_format函数中将其打印出来:

void avcodec_string(char *buf, int buf_size, AVCodecContext *enc, int encode)
{
//...switch (enc->codec_type) {case AVMEDIA_TYPE_AUDIO:av_bprintf(&bprint, "%s", separator);if (enc->sample_rate) {av_bprintf(&bprint, "%d Hz, ", enc->sample_rate);}
//...}
//...
}

所以FFmpeg获取AAC裸流文件的音频采样率,获取的是ADTS Header中的samplingFrequencyIndex属性:

五、音频声道数

FFmpeg获取AAC裸流的音频声道数,是根据ADTS Header中的channel_configuration属性获取的。 由《音视频入门基础:AAC专题(3)——AAC的ADTS格式简介》可以知道,ADTS Header中存在一个占3位的channel_configuration属性,表示音频声道数:

ff_adts_header_parse函数中,通过下面语句,将音频声道数赋值给hdr->chan_config:

hdr->chan_config    = ch;

然后在parse_adts_frame_header函数中,将hdr->chan_config赋值给AVCodecContext的ch_layout:

​
​
static int parse_adts_frame_header(AACDecContext *ac, GetBitContext *gb)
{
//...size = ff_adts_header_parse(gb, &hdr_info);if (size > 0) {//...if (hdr_info.chan_config) {ac->oc[1].m4ac.chan_config = hdr_info.chan_config;if ((ret = set_default_channel_config(ac, ac->avctx,layout_map,&layout_map_tags,hdr_info.chan_config)) < 0)return ret;if ((ret = output_configure(ac, layout_map, layout_map_tags,FFMAX(ac->oc[1].status,OC_TRIAL_FRAME), 0)) < 0)return ret;}//...}
//...
}

然后在dump_stream_format函数中,通过avcodec_string函数中的语句:av_channel_layout_describe_bprint(&enc->ch_layout, &bprint)拿到AVCodecContext的ch_layout对应的音频声道数目。最后再在dump_stream_format函数中将音频声道数目打印出来:

void avcodec_string(char *buf, int buf_size, AVCodecContext *enc, int encode)
{
//...switch (enc->codec_type) {case AVMEDIA_TYPE_AUDIO:av_channel_layout_describe_bprint(&enc->ch_layout, &bprint);//...break;}
//...
}

所以FFmpeg获取AAC裸流文件的音频声道数,获取的是ADTS Header中的channel_configuration属性:

六、Bit depth

FFmpeg获取AAC裸流的Bit depth(又叫位深度、位元深度、采样深度、采样位数、采样格式),获取到的值是没有意义的。当音频压缩编码格式为AAC时,FFmpeg会强制把Bit depth设置为fltp。这是因为对于有损压缩编解码器(如MP3和AAC),Bit depth是在编码期间计算的,并且可以因采样而异,Bit depth只对PCM数字信号有意义。具体可以参考:《音视频入门基础:AAC专题(3)——AAC的ADTS格式简介》。

可以看到在aac_decode_init函数中(该函数定义在libavcodec/aacdec_template.c),强制把音频采样格式设置成了AV_SAMPLE_FMT_FLTP:

static av_cold int aac_decode_init(AVCodecContext *avctx)
{
//...avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
//...
}

所以如果音频压缩编码格式为AAC,通过FFmpeg获取到的音频采样格式固定为fltp,该值没有意义:

七、音频码率

通过解码ADTS Header无法直接获得音频码率,但是可以通过里面的属性间接计算出音频码率。

ff_adts_header_parse函数中,将该ADTS音频帧中原始数据块的个数乘以1024,得到的结果赋值给hdr->samples。FFmpeg源码内部强制默认AAC(AAC Main、AAC LC、AAC SSR、AAC LTP)的samples是1024。hdr->samples为该ADTS音频帧中采样的次数:

hdr->samples        = (rdb + 1) * 1024;

通过公式得到该ADTS音频帧的码率,单位为bits/s,赋值给hdr->bit_rate:

hdr->bit_rate       = size * 8 * hdr->sample_rate / hdr->samples;

然后ff_aac_ac3_parse函数中,通过下面代码得到实际的以bps为单位的音频码率,赋值给AVCodecContext的bit_rate:

int ff_aac_ac3_parse(AVCodecParserContext *s1,AVCodecContext *avctx,const uint8_t **poutbuf, int *poutbuf_size,const uint8_t *buf, int buf_size)
{
//...if (got_frame) {//...int bit_rate;if (avctx->codec_id != AV_CODEC_ID_AAC) {//...}else{AACADTSHeaderInfo hdr, *phrd = &hdr;int ret = avpriv_adts_header_parse(&phrd, buf, buf_size);if (ret < 0)return i;bit_rate = hdr.bit_rate;}/* Calculate the average bit rate */s->frame_number++;if (!CONFIG_EAC3_DECODER || avctx->codec_id != AV_CODEC_ID_EAC3) {avctx->bit_rate +=(bit_rate - avctx->bit_rate) / s->frame_number;}}
//...
}

然后在dump_stream_format函数中,通过avcodec_string函数中的语句:bitrate = get_bit_rate(enc)拿到AVCodecContext的bit_rate。最后再把它除以1000,得到以kb/s为单位的音频码率,打印出来:

void avcodec_string(char *buf, int buf_size, AVCodecContext *enc, int encode)
{
//...bitrate = get_bit_rate(enc);if (bitrate != 0) {av_bprintf(&bprint, ", %"PRId64" kb/s", bitrate / 1000);
//...
}

所以FFmpeg获取AAC裸流文件的音频码率,是根据ADTS Header中的属性计算出来的:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/496100.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

docker-compose搭建sfpt服务器

1. 搭建 创建sftp目录&#xff0c;进入该目录创建docker-compose.yml文件内容如下&#xff1a; version: 3.7services:sftp:image: atmoz/sftpcontainer_name: sftpports:- "122:22"volumes:- ./sftp-data:/homeenvironment:SFTP_USERS: "liubei:liubei161:10…

散斑/横向剪切/迈克尔逊/干涉条纹仿真技术分析

摘要 本博文提供了多种数据类型的干涉条纹仿真&#xff0c;并展示了它们对应的散斑干涉条纹。还分别给出了横向剪切干涉以及剪切散斑干涉条纹的仿真。 一、迈克尔逊干涉与散斑干涉仿真 下图为干涉条纹与对应的散斑干涉条纹的仿真示意图。其中&#xff0c;干涉条纹可认为是源…

Go快速开发框架2.6.0版本更新内容快速了解

GoFly企业版框架2.6.0版本更新内容较多&#xff0c;为了大家能够快速了解&#xff0c;本文将把更新内容列出详细讲解。本次更新一段时间以来大伙反馈的问题&#xff0c;并且升级后台安全认证机制&#xff0c;增加了RBAC权限管理及系统操作日志等提升后台数据安全性。 更新明细…

通过GRE协议组建VPN网络

GRE&#xff08;Generic Routing Encapsulation&#xff0c;通用路由封装协议&#xff09;协议是一种简单而有效的封装协议&#xff0c;它在网络中的广泛应用&#xff0c;比如在构建VPN网络。   GRE是一种封装协议&#xff0c;它允许网络层协议&#xff08;如IP&#xff09;的…

论文阅读 - 《Large Language Models Are Zero-Shot Time Series Forecasters》

Abstract 通过将时间序列编码为数字组成的字符串&#xff0c;我们可以将时间序列预测当做文本中下一个 token预测的框架。通过开发这种方法&#xff0c;我们发现像GPT-3和LLaMA-2这样的大语言模型在下游任务上可以有零样本时间序列外推能力上持平或者超过专门设计的时间序列训…

16 循环语句——for循环

#字符串是可以进行迭代的 for 循环: for 变量 in 可迭代的东西: 代码 把可迭代的东西中的每一项内容拿出来&#xff0c;挨个的赋值给变量&#xff0c;每一次的赋值都要执行一次循环体(代码) s "你好呀&#xff0c;我叫赛利…

K8s 不同层次的进程间通信实现

在 Kubernetes (K8s) 中&#xff0c;不同层次的进程间通信实现方式如下&#xff1a; 1. Pod 内进程间通信 Pod 是 Kubernetes 中的最小部署单元&#xff0c;通常包含一个或多个共享相同网络命名空间的容器。 方式&#xff1a; 使用 localhost 和容器暴露的端口进行通信。共享文…

PH热榜 | 2024-12-26

1. Tutor LMS 3.0 标语&#xff1a;一体化WordPress学习管理系统 介绍&#xff1a;Tutor LMS 3.0焕然一新&#xff0c;内置电商功能和AI工具&#xff0c;让用户可以轻松创建引人入胜的在线课程&#xff0c;管理订阅&#xff0c;并直接在平台上创收。 产品网站&#xff1a; 立…

有没有免费提取音频的软件?音频编辑软件介绍!

出于工作和生活娱乐等原因&#xff0c;有时候我们需要把音频单独提取出来&#xff08;比如歌曲伴奏、人声清唱等、乐器独奏等&#xff09;。要提取音频必须借助音频处理软件&#xff0c;那么有没有免费提取音频的软件呢&#xff1f;下面我们将为大家介绍几款免费软件&#xff0…

C++--------------树

探索 C 中的树结构&#xff1a;从基础到应用 在 C 编程的世界里&#xff0c;树结构是一种非常重要且强大的数据结构&#xff0c;它在许多领域都有着广泛的应用&#xff0c;从简单的数据存储到复杂的算法实现&#xff0c;树结构都展现出了独特的优势。今天&#xff0c;就让我们一…

Python PyMupdf 去除PDF文档中Watermark标识水印

通过PDF阅读或编辑工具&#xff0c;可在PDF中加入Watermark标识的PDF水印&#xff0c;如下图&#xff1a; 该类水印特点 这类型的水印&#xff0c;会在文件的字节流中出现/Watermark、EMC等标识&#xff0c;那么&#xff0c;我们可以通过改变文件字节内容&#xff0c;清理掉…

centos制作离线安装包

目录 1.yumdownloader与repotrack怎么选择&#xff1f; yumdownloader --resolve repotrack 总结 2.环境准备 3.安装 1.yumdownloader与repotrack怎么选择&#xff1f; yumdownloader --resolve 和 repotrack 都是与 YUM&#xff08;Yellowdog Updater Modified&#xf…

C++的内存四区

文章目录 内存四区1.程序运行前1.1 代码区2.1 全局区2.2 示例 2.程序运行后1.1 栈区1.2 堆区 内存四区 1.程序运行前 在程序编译后&#xff0c;生成了exe可执行程序&#xff0c;未执行该程序前分为两个区域。该区域的数据在程序结束后由操作系统释放. 1.1 代码区 ​存放 CPU …

网络工程师常用软件之PING测试工具

老王说网络&#xff1a;网络资源共享汇总 https://docs.qq.com/sheet/DWXZiSGxiaVhxYU1F ☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝ 今天介绍一款好用的PING测试工具&#xff0c;ATKKPING。 ATKKPING的主要功能包括测试…

118.【C语言】数据结构之排序(堆排序和冒泡排序)

目录 1.堆排序 2.冒泡排序 单趟排序的两种情况 情况1.和arr[i]的前一个元素交换,第一次循环结束时i的值为n-1,第二次循环结束时i的值为n-2 情况2.和arr[i]的后一个元素交换,第一次循环结束时i的值为n-2,第二次第一次循环结束时i的值为n-3,... 将单趟排序代码嵌入外循环中…

路由器做WPAD、VPN、透明代理中之间一个

本文章将采用家中TP-Link路由器 路由器进行配置DNS DNS理解知识本文DNS描述参考&#xff1a;网络安全基础知识&中间件简单介绍_计算机网络中间件-CSDN博客 TP LINK未知的错误&#xff0c;错误编号&#xff1a;-22025 TP-LINK 认证界面地址&#xff1a;https://realnam…

Docker部署Sentinel

一、简介 是什么&#xff1a;面向分布式、多语言异构化服务架构的流量治理组件 能干嘛&#xff1a;从流量路由、流量控制、流量整形、熔断降级、系统自适应过载保护、热点流量防护等多个维度来帮助开发者保障微服务的稳定性 官网地址&#xff1a;https://sentinelguard.io/zh-c…

机器学习之KNN算法预测数据和数据可视化

机器学习及KNN算法 目录 机器学习及KNN算法机器学习基本概念概念理解步骤为什么要学习机器学习需要准备的库 KNN算法概念算法导入常用距离公式算法优缺点优点&#xff1a;缺点︰ 数据可视化二维界面三维界面 KNeighborsClassifier 和KNeighborsRegressor理解查看KNeighborsRegr…

Java包装类型的缓存

Java 基本数据类型的包装类型的大部分都用到了缓存机制来提升性能。 Byte,Short,Integer,Long 这 4 种包装类默认创建了数值 [-128&#xff0c;127] 的相应类型的缓存数据&#xff0c;Character 创建了数值在 [0,127] 范围的缓存数据&#xff0c;Boolean 直接返回 True or Fal…

施耐德变频器ATV320系列技术优势:创新与安全并重

在工业自动化领域&#xff0c;追求高效、安全与智能已成为不可阻挡的趋势。施耐德变频器ATV320系列凭借其强大的设计标准和全球认证&#xff0c;成为能够帮助企业降低安装成本&#xff0c;提高设备性能的创新解决方案。 【全球认证&#xff0c;品质保障】ATV320 系列秉持施耐德…