理解神经网络

神经网络是一种模拟人类大脑工作方式的计算模型,是深度学习和机器学习领域的基础。

基本原理

神经网络的基本原理是模拟人脑神经系统的功能,通过多个节点(也叫神经元)的连接和计算,实现非线性模型的组合和输出。每个节点接收来自前一层节点的输入,进行加权和,加上偏置,然后通过激活函数处理,输出到下一层。神经网络采用非线性函数,从而可以模拟现实世界的复杂系统。同时,神经网络采用参数权重,这些权重可以用来衡量每一个神经元之间的相互作用,并且随着训练的不断进行而不断调整,从而实现自动学习和模式识别。

基本组成

神经网络的基本组成主要包括节点(神经元)、层次、权重、偏置和激活函数。

  1. 节点(神经元)神经网络的基本单元,模拟生物神经元的功能。每个节点接收来自前一层节点的输入,进行加权和,加上偏置,然后通过激活函数处理,输出到下一层。

  2. 层次:神经网络通常由输入层、隐藏层和输出层组成。输入层负责接收输入数据;隐藏层位于输入层和输出层之间,进行数据的加工和转换;输出层输出最终的计算结果,如分类或回归的预测值。

  3. 权重:连接不同神经元的参数,代表一个神经元输出对另一个神经元输出的影响力。在训练过程中,神经网络通过调整权重来学习数据中的模式。

  4. 偏置:加到加权和上的一个常数,可以看作是每个神经元的一个额外输入。偏置允许神经元即使在所有输入都为零时也有非零的输出。

  5. 激活函数:决定神经元是否应该被激活(即输出信号)的函数。激活函数增加了网络的非线性能力,使得神经网络能够学习和模拟复杂的非线性关系。

通俗易懂地理解就是:

神经网络就像是一个由很多“小脑袋”(节点)组成的“大脑”。这些“小脑袋”分层排列,第一层接收信息(输入层),中间的层处理信息(隐藏层),最后一层给出答案(输出层)。

每个“小脑袋”都会看其他“小脑袋”传来的信息重不重要(权重),还会自己加点想法(偏置),然后决定要不要“发言”(通过激活函数输出)。

整个“大脑”通过不断学习和调整这些“小脑袋”的想法(权重和偏置),变得越来越聪明,能够处理更复杂的问题。

这样,神经网络就能学会从输入的信息中找出规律,然后给出我们想要的答案。

训练过程

神经网络的训练过程通常包括前向传播和反向传播两个阶段。

  1. 前向传播:神经网络从输入层接收数据,经过隐含层的计算,最后输出预测结果。

  2. 反向传播:神经网络根据预测结果和真实标签计算误差,然后从输出层到输入层逐层反向传播误差,依次更新权重和偏置,使得网络的预测能力逐渐提高。反向传播算法通常使用梯度下降法或者其变种来优化网络的参数。

类型与应用

神经网络有许多不同的类型,每种类型都适用于特定的任务或数据类型。以下是一些常见的神经网络类型及其特点和应用领域:

  1. 前馈神经网络(Feedforward Neural Network):最基本的神经网络类型,信息从输入层向输出层单向传播。适用于分类、回归等任务。

  2. 卷积神经网络(Convolutional Neural Network, CNN):专门用于处理图像数据的神经网络。通过卷积层和池化层提取图像特征,适用于图像识别、图像分类等任务。

  3. 循环神经网络(Recurrent Neural Network, RNN):能够处理序列数据的神经网络。通过循环连接捕捉序列中的时间依赖性,适用于语音识别、自然语言处理等任务。

  4. 生成对抗网络(Generative Adversarial Network, GAN):由生成器和判别器两个神经网络组成,能够生成逼真的合成数据。适用于图像生成、视频合成等任务。

神经网络已被广泛应用于多个领域,并在许多场景中取得了显著成果。例如,在人脸识别领域,神经网络可以通过分析人脸的特征,实现高效的身份认证和识别;在自动驾驶系统中,神经网络发挥着关键作用,包括车辆定位、道路识别、障碍物检测与跟踪等功能。

这四种类型的复杂度对比,也是上述的排列,其中,前馈神经网络的复杂度最低,是神经网络中最基础的一种,生成对抗网络的复杂度最高。

进一步展开,更通俗地理解就是:

  • 前馈神经网络就像是一个流水线,数据从输入层进入,经过一系列的加工(隐藏层中的神经元处理),最后从输出层出来。每个神经元都会接收来自上一层的数据,进行加权求和,再加上一个偏置值,然后通过激活函数决定是否输出。这个过程是单向的,没有反馈。

  • 卷积神经网络是专门用来处理图像数据的。它像是一个图像识别专家,通过卷积层来提取图像中的特征(比如边缘、纹理等),然后通过池化层来减少数据的维度,最后通过全连接层来输出分类结果。卷积层中的卷积核就像是一个个的小刷子,在图像上滑动来提取特征。

  • 循环神经网络擅长处理序列数据,比如文本、语音等。它像是一个有记忆的人,能够记住之前的信息,并根据之前的信息来预测接下来的内容。循环神经网络中的神经元不仅接收当前时间步的输入,还接收上一个时间步的输出作为输入,这样就能够捕捉序列中的时间依赖性。

  • 生成对抗网络由两个网络组成:生成器和判别器。生成器像是一个造假者,它接收一个随机噪声作为输入,然后生成一个逼真的数据(比如图像)。判别器像是一个鉴定师,它接收真实数据和生成器生成的数据,然后判断这些数据是真实的还是生成的。这两个网络相互对抗,生成器努力生成逼真的数据来欺骗判别器,而判别器则努力提高自己的鉴别能力。通过不断的训练,生成器最终能够生成非常逼真的数据。

优缺点

神经网络的优点包括:

  1. 具有自学习功能,能够通过训练自动提取数据中的特征。

  2. 具有联想存储功能,能够存储和回忆过去的经验。

  3. 具有高速寻找优化解的能力,能够解决复杂的优化问题。

然而,神经网络也存在一些缺点:

  1. 无法解释推理过程和推理依据,缺乏可解释性。

  2. 当数据不充分时,神经网络可能无法进行有效的工作。

  3. 对非线性数据处理能力有限,且理论和学习算法仍有待完善。

神经网络作为人工智能的核心技术之一,具有强大的学习能力和广泛的适用性。然而,也需要认识到其存在的缺点和局限性,并在实际应用中结合其他技术和方法进行综合考虑和优化。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/496406.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

联通光猫怎么自己改桥接模式?

环境: 联通光猫 ZXHN F677V9 硬件版本号 V9.0 软件版本号 V9.0.0P1T3 问题描述: 联通光猫怎么自己改桥接模式 家里用的是ZXHN F677V9 光猫,最近又搞了个软路由,想改桥接模式 解决方案: 1.拿到最新超级密码&…

Matrix-Breakout 2 Morpheus(找到第一个flag)

第一步 信息收集 (1)寻找靶场真实ip arp-scan -l 靶场真实 ip 为192.168.152.154 (2)探测端口及服务 nmap -p- -sV 192.168.52.135 第二步 开始渗透 (1)访问web服务 http://192.168.152.154and http://192.168.52.135:81 发现 81 端口的页面要登录 我们使用 dirb 扫描…

【CSS in Depth 2 精译_094】16.2:CSS 变换在动效中的应用(下)——导航菜单的文本标签“飞入”特效与交错渲染效果的实现

当前内容所在位置(可进入专栏查看其他译好的章节内容) 第五部分 添加动效 ✔️【第 16 章 变换】 ✔️ 16.1 旋转、平移、缩放与倾斜 16.1.1 变换原点的更改16.1.2 多重变换的设置16.1.3 单个变换属性的设置 16.2 变换在动效中的应用 16.2.1 放大图标&am…

机器人C++开源库The Robotics Library (RL)使用手册(三)

进入VS工程,我们先看看这些功能函数及其依赖库的分布关系: rl命名空间下,主要有八大模块。 搞定VS后将逐个拆解。 1、编译运行 根据报错提示,配置相应错误的库(根据每个人安装位置不同而不同,我的路径如下:) 编译所有,Release版本耗时大约10分钟。 以rlPlan运动…

【报错】node:internal/modules/cjs/loader:936

报错问题: 当执行npm run dev后,出现下面错误 这个错误一般是由于Node.js无法找到所需的模块而引起的,解决此问题的一种方法就是重新安装所需的模块。 解决办法: 删除npm install 所下载在项目里的node_modules文件执行操作&…

Bash 脚本教程

注:本文为 “Bash 脚本编写” 相关文章合辑。 BASH 脚本编写教程 as good as well于 2017-08-04 22:04:28 发布 这里有个老 American 写的 BASH 脚本编写教程,非常不错,至少没接触过 BASH 的也能看懂! 建立一个脚本 Linux 中有…

谷歌浏览器 Chrome 提示:此扩展程序可能很快将不再受支持

问题现象 在Chrome 高版本上的扩展管理页面(地址栏输入chrome://extensions/或者从界面进入): , 可以查看到扩展的情况。 问题现象大致如图: 问题原因 出现此问题的根本原因在于:谷歌浏览器本身的扩展机制发生了…

vue2 升级为 vite 打包

VUE2 中使用 Webpack 打包、开发,每次打包时间太久,尤其是在开发的过程中,本文记录一下 VUE2 升级Vite 步骤。 安装 Vue2 Vite 依赖 dev 依赖 vitejs/plugin-vue2": "^2.3.3 vitejs/plugin-vue2-jsx": "^1.1.1 vite&…

决策树python实现代码1

目录 前言代码实现 前言 数据:Titanic.csv,是一份泰坦尼克号的乘客信息及获救情况的统计,今天先完成数据清洗部分的代码逻辑。 代码实现 # 导入第三方模块 import pandas as pd from sklearn import model_selection from sklearn.model_s…

【Go学习】从一个出core实战问题看Go interface赋值过程

0x01 背景 版本中一个同学找我讨论一个服务出core的问题,最终他靠自己的探索解决了问题,给出了初步的直接原因结论,"Go 中 struct 赋值不是原子的”。间接原因的分析是准确的,直接原因,我有点怀疑。当时写了一些…

RTMW:实时多人2D和3D 全人体姿态估计

单位:上海AI实验室 代码:mmpose/tree/main/projects/rtmpose 系列文章目录 RTMO: 面向高性能单阶段的实时多人姿态估计 目录 系列文章目录摘要一、背景二、相关工作2.1 自上而下的方法。2.2 坐标分类。2.3 3D Pose 3 实验方法3.1.1 任务限制3.1.3训练技…

[Visual studio] 性能探测器

最近发现VS的profile还是很好用的, 可以找到项目代码的瓶颈,比如发现CPU的每一个函数的时间占比,分析代码耗时分布,和火焰图一样的效果 如何使用 1. 打开你的项目,调整成release状态 2. 点击调试->性能探测器 3…

04软件测试需求分析案例-用户登录

通读文档,提取信息,提出问题,整理为需求。 从需求规格说明、设计说明、配置说明等文档获取原始需求,通读原始需求,分析有哪些功能,每种功能要完成什么业务,业务该如何实现,业务逻辑…

【Linux】:线程安全 + 死锁问题

📃个人主页:island1314 🔥个人专栏:Linux—登神长阶 ⛺️ 欢迎关注:👍点赞 👂🏽留言 😍收藏 💞 💞 💞 1. 线程安全和重入问题&…

前端下载后端文件流,文件可以下载,但是打不开,显示“文件已损坏”的问题分析与解决方案

目录 场景还原 相关代码开发者工具 - 网络请求记录 问题排查 定位改bug 总结 场景还原 我在前端使用axios接收后端xlsx表格文件流并下载,xlsx文件能够下载成功,但是打开却显示文件无法打开 相关代码 请求API封装:Content–Type以及responseType经核…

Docker Run使用方法及参数详细说明

Docker Run使用方法及参数详细说明 基本语法常用参数使用示例总结Docker Run是Docker中最基本的命令之一,用于创建并启动一个新的容器。通过Docker Run,用户可以基于指定的镜像创建一个容器实例,并且可以配置容器的各种参数,如网络设置、存储选项等。下面将详细介绍Docker …

嵌入式科普(25)Home Assistant米家集成意味着IOT的核心是智能设备

目录 一、概述 二、一张图说尽HA 三、HA的相关资料 四、米家集成划重点 五、总结 一、概述 小米Home Assistant 米家集成开源一周star近15k,迭代4个版本,12个贡献者 本文科普一下Home Assistant(简称HA)、米家集成&#xff…

每日小题打卡

目录 幂次方 手机键盘 简单排序 校庆 性感素数 幂次方 题目描述 对任意正整数 N,计算 X^Nmod233333 的值。 输入格式 共一行,两个整数 X 和 N。 输出格式 共一行,一个整数,表示 X^Nmod233333 的值。 数据范围 1≤…

费舍尔信息矩阵全面讲述

费舍尔信息矩阵(Fisher Information Matrix) 费舍尔信息矩阵是统计学中一个非常重要的概念,尤其在参数估计、最大似然估计(MLE)和贝叶斯推断中具有广泛的应用。它反映了参数估计的不确定性程度,也可以用来…

网络智能服务

网络智能服务(Network Intelligence Services)是指通过应用先进的技术、算法和数据分析能力来提升网络管理、优化网络性能、增强安全性和提供个性化服务的技术集合。网络智能服务通常结合人工智能(AI)、机器学习(ML&am…