最新高性能多目标优化算法:多目标麋鹿优化算法(MOEHO)求解LRMOP1-LRMOP6及工程应用---盘式制动器设计,提供完整MATLAB代码

一、麋鹿优化算法

麋鹿优化算法(Elephant Herding Optimization,EHO)是2024年提出的一种启发式优化算法,该算法的灵感来源于麋鹿群的繁殖过程,包括发情期和产犊期。在发情期,麋鹿群根据公麋鹿之间的争斗分为不同大小的家族,较强的公麋鹿可以与大量的雌麋鹿组成家族。在产犊期,每个家族的公麋鹿和雌麋鹿繁殖新的幼崽。在优化过程中,优化循环由发情期、产犊期和选择期三个阶段组成。在选择期,所有家族合并,选择最适应的麋鹿群用于下一轮的发情期和产犊期。EHO 将种群分为一组组的群体,每个群体在发情期有一个领导者和若干跟随者,跟随者的数量根据领导者的适应度值确定。在产犊期,每个群体根据领导者和跟随者生成新的解。在选择期,所有群体的成员包括领导者、跟随者和新解被合并,选择最适应的种群。
在这里插入图片描述

参考文献:
[1] Al-betar, M.A., Awadallah, M.A., Braik, M.S., Makhadmeh, S.N., & Abu Doush, I. (2024). Elk herd optimizer: a novel nature-inspired metaheuristic algorithm. Artif. Intell. Rev., 57, 48.

二、多目标麋鹿优化算法

针对单目标优化问题,麋鹿优化算法已显示出其有效性。然而,在面对多目标优化问题时,需要一种能够同时处理多个冲突目标的算法。因此,本文提出多目标麋鹿优化算法(Multi-objective Elephant Herding Optimization,MOEHO)。MOEHO是麋鹿优化算法的多目标扩展,它能够有效地解决多目标优化问题。

为了评估MOEHO的性能,我们将其应用于一组标准的基准测试函数,这组函数包括LRMOP1-LRMOP6及工程应用—盘式制动器设计。这些函数在测试多目标优化算法的效率方面被广泛采用。此外,为了全面评估算法的收敛性和解的多样性,我们使用了六种不同的性能度量指标:GD、IGD、HV、Spacing、Spread和Coverage。通过这些指标的综合分析,我们可以有效地评估该算法在处理多目标优化问题时的整体性能。
盘式制动器设计的数学模型如下:
在这里插入图片描述

MOEHO算法的执行步骤可以描述如下:
在这里插入图片描述

  1. 初始种群的生成:算法首先随机生成一个初始种群,其中每个个体象征着一个可能的解决方案。

  2. 个体的评估与筛选:算法对初始种群中的个体进行评估,并根据特定的标准筛选出合适的个体。

  3. 新个体的产生:通过配对操作,从筛选后的个体中生成新的子代个体。

  4. 环境选择过程:算法通过环境选择机制对新产生的子代个体进行评估,以确定哪些个体将进入下一代。

  5. 终止条件的判断:算法会持续进行迭代,直到满足预设的终止条件,这些条件可能包括达到最大迭代次数或解决方案的质量达到既定标准。

  6. 近似Pareto解集的形成:当满足终止条件后,最后一次环境选择中保留的个体将构成近似的Pareto解集。

在这一过程中,环境选择机制扮演着至关重要的角色。它负责从子代个体中挑选出能够支配其他个体或与其他个体互不支配的精英个体。这些精英个体代表了当前种群中的最优质解。随着算法的不断迭代,每次迭代都能选出新的精英个体,最终能够逼近问题的最优解。

2.1、六种性能评价指标介绍

  1. GD(Generational Distance)世代距离
    GD指标用于评价获得的帕累托前沿(PF)和最优帕累托前沿之间的距离。对于每个属于PF的解,找到与其最近的最优帕累托前沿中的解,计算其欧式距离,GD为这些最短欧式距离的平均值。GD值越小,代表收敛性越好,找到的PF与最优帕累托前沿越接近。

  2. IGD(Inverted Generational Distance)逆世代距离
    IGD与GD相似,但同时考虑了多样性和收敛性。对于真实的最优帕累托前沿中的每个解,找到与其最近的PF中的解,计算其欧式距离,取平均值而不需开方。如果PF的数量大于最优帕累托前沿的数量,那么IGD就能最完整地表达PF的性能,IGD值越小,代表算法多样性和收敛性越好。

  3. HV(Hypervolume)超体积
    HV也称为S metric,用于评价目标空间被一个近似集覆盖的程度,是最为普遍的一种评价指标。需要用到一个参考点,HV值为PF与参考点之间组成的超立方体的体积。HV的比较不需要先验知识,不需要找到真实的帕累托前沿。如果某个近似集A完全支配另一个近似集B,那么A的超容量HV会大于B,因此HV完全可以用于Pareto比较。

  4. Spacing
    Spacing是衡量算法生成的非支配解集中各个解之间平均距离的指标。Spacing值越小,表示解集内部的解越密集,多样性越高。

  5. Spread
    Spread指标衡量算法生成的非支配解集在Pareto前沿上的分散程度。高的Spread值意味着解集在前沿上分布得更均匀,没有聚集在某个区域。

  6. Coverage
    Coverage指标衡量一个算法生成的Pareto前沿覆盖另一个算法生成的Pareto前沿的比例。如果算法A的Coverage指标高于算法B,那么意味着算法A生成的Pareto前沿在某种程度上包含了算法B生成的Pareto前沿。

2.2、部分MATLAB代码

%% 参数说明
%testProblem 测试问题序号
%Name 测试问题名称
%dim 测试问题维度
%numObj测试问题目标函数个数
%lb测试问题下界
%ub测试问题上界
%SearchAgents_no 种群大小
%Max_iter最大迭代次数
%Fbest 算法求得的POF
%Xbest 算法求得的POS
%TurePF 测试问题的真实pareto前沿
%Result 评价指标随迭代次数的变化值
testProblem=2;
[Name,dim,numObj,lb,ub]=GetProblemInfo(testProblem);%获取测试问题的相关信息
SearchAgents_no=200;%种群大小 
Max_iter=200;%最大迭代次数
[Fbest,Xbest,TurePF,Result] = MOEHO(Max_iter,SearchAgents_no,Name,dim,numObj,lb,ub);%算法求解

2.3、部分结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

三、完整MATLAB代码

见下方名片

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/496584.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Spring事务回滚

Transactional注解 Transactional作用:就是在当前这个方法执行开始之前来开启事务,方法执行完毕之后提交事务。如果在这个方法执行的过程当中出现了异常,就会进行事务的回滚操作。 Transactional注解:我们一般会在业务层当中来控制…

AT24C02学习笔记

看手册: AT24Cxx xx代表能写入xxK bit(xx K)/8 byte 内部写周期很关键,代表每一次页写或字节写结束后时间要大于5ms(延时5ms确保完成写周期),否则时序会出错。 页写:型不同号每一页可能写入不同大小的…

Vite内网ip访问,两种配置方式和修改端口号教程

目录 问题 两种解决方式 结果 总结 preview.host preview.port 问题 使用vite运行项目的时候,控制台会只出现127.0.0.1(localhost)本地地址访问项目。不可以通过公司内网ip访问,其他团队成员无法访问,这是因为没…

Python基础语法知识——列表、字典、元组与集合

列表(list)、字典(dictionary)、元组(tuple)与集合(set)都可以看成存储数据的容器,但是前两者常用,后两者用得相对较少。 目录 1 列表(list) 1.1列表入门 1 列表(list) 1.1列表入门 class1["李白…

JVM调优实践篇

理论篇 1多功能养鱼塘-JVM内存 大鱼塘O(可分配内存): JVM可以调度使用的总的内存数,这个数量受操作系统进程寻址范围、系统虚拟内存总数、系统物理内存总数、其他系统运行所占用的内存资源等因素的制约。 小池塘A&a…

EKF 自动匹配维度 MATLAB代码

该 M A T L A B MATLAB MATLAB代码实现了扩展卡尔曼滤波( E

C++第五六单元测试

1【单选题】在公有派生类的成员函数不能直接访问基类中继承来的某个成员,则该成员一定是基类中的( C )。(2.0分) A、公有成员B、保护成员C、私有成员D、保护成员或私有成员 注意从类外访问与从派生类中访问 2【单…

TDengine 新功能 VARBINARY 数据类型

1. 背景 VARBINARY 数据类型用于存储二进制数据,与 MySQL 中的 VARBINARY 数据类型功能相同,VARBINARY 数据类型长度可变,在创建表时指定最大字节长度,使用进按需分配存储,但不能超过建表时指定的最大值。 2. 功能说明…

rust windwos 两个edit框

use winapi::shared::minwindef::LOWORD; use windows::{core::*,Win32::{Foundation::*,Graphics::Gdi::{BeginPaint, EndPaint, PAINTSTRUCT},System::LibraryLoader::GetModuleHandleA,UI::WindowsAndMessaging::*,}, };// 两个全局静态变量,用于保存 Edit 控件的…

代码随想录Day51 99. 岛屿数量,99. 岛屿数量,100. 岛屿的最大面积。

1.岛屿数量深搜 卡码网题目链接(ACM模式)(opens new window) 题目描述: 给定一个由 1(陆地)和 0(水)组成的矩阵,你需要计算岛屿的数量。岛屿由水平方向或垂直方向上相邻的陆地连接…

邮箱手机号脱敏

项目场景: 提示:这里简述项目相关背景: 输入框的脱敏,当输入的时候显示正常,失去焦点部分显示**** 问题描述 提示:这里描述项目中遇到的问题: 脱敏可以封装 一下成为一个方法,挂…

C语言----变量与常量

目录 变量 变量的分类 常量 分类: 1. 字符型常量 2. 字符串常量 3. 整形常量 4. 浮点型常量 5. 指数常量 6. 标识常量 变量 概念:在程序运行中发生改变的量 定义格式: 存储类型(一般存储类型是可以省略的) 数据类型 变量名 aut…

SQLite本地数据库的简介和适用场景——集成SpringBoot的图文说明

前言:现在项目普遍使用的数据库都是MySQL,而有些项目实际上使用SQLite既足矣。在一些特定的项目中,要比MySQL更适用。 这一篇文章简单的介绍一下SQLite,对比MySQL的优缺点、以及适用的项目类型和集成SpringBoot。 1. SQLite 简介 …

线性代数行列式

目录 二阶与三阶行列式 二元线性方程组与二阶行列式 三阶行列式 全排列和对换 排列及其逆序数 对换 n阶行列式的定义 行列式的性质 二阶与三阶行列式 二元线性方程组与二阶行列式 若是采用消元法解x1、x2的话则得到以下式子 有二阶行列式的规律可得:分…

闲谭Scala(3)--使用IDEA开发Scala

1. 背景 广阔天地、大有作为的青年,怎么可能仅仅满足于命令行。 高端大气集成开发环境IDEA必须顶上,提高学习、工作效率。 开整。 2. 步骤 2.1 创建工程 打开IDEA,依次File-New-Project…,不好意思我的是中文版:…

http 请求总结get

关于get请求传递body的问题 错误代码 有400 , 415 等情况 <!doctype html><html lang"zh"><head><title>HTTP Status 400 – 错误的请求</title><style type"text/css">body {font-family:Tahoma,Arial,sans-seri…

CCF-GESP 等级考试 2023年12月认证C++五级真题解析

2023年12月真题 一、单选题&#xff08;每题2分&#xff0c;共30分&#xff09; 正确答案&#xff1a;C 考察知识点&#xff1a;算法 解析&#xff1a;fiboA 是很好理解的&#xff0c;但是执行效率不高&#xff0c;有的计算是重复的&#xff0c;导致效率低。 正确答案&#xf…

Vscode + gdbserver远程调试开发板指南:

本章目录 步骤环境准备网络配置vscode配置步骤 (全图示例)开发板配置开始调试注意: 每次断开之后&#xff0c;开发板都需要重新启动gdbserver才可调试。 参考链接: 步骤 环境准备 将交叉编译链路径加入$PATH变量&#xff1a;确保系统能够找到所需的工具。 export PATH$PATH:/p…

Docker【初识Docker】

目录 为什么会出现Docker这门技术喃&#xff1f; 应用开发和部署的困境 容器技术的先兆 Docker 的出现&#xff1a;简化容器化 Docker 技术的关键创新&#xff1a; Docker 的广泛应用和变革 什么是 Docker&#xff1f; Docker的历史 早期背景&#xff1a;容器化和虚拟化…

金融租赁系统的发展与全球化战略实施探讨

内容概要 金融租赁系统的演变并非一帆风顺&#xff0c;像一场跌宕起伏的电影。首先&#xff0c;咱们得看看它的起源及现状。随着经济的快速发展&#xff0c;金融租赁逐渐作为一种灵活的融资手段崭露头角。在中国市场中&#xff0c;企业对设备和技术更新换代的需求日益迫切&…