OpenCV-Python实战(11)——边缘检测

一、Sobel 算子

通过 X 梯度核与 Y 梯度核求得图像在,水平与垂直方向的梯度。

img = cv2.Sobel(src=*,ddepth=*,dx=*,dy=*,ksize=*,scale=*,delta=*,borderType=*)

img:目标图像。

src:原始图像。

ddepth:目标图像深度,-1 代表与原始图像深度相同。

dx、dy:x或y 轴方向的求导阶数,可以为:0、1、3 等。0 表示不求导。

ksize:Soble核大小。

scale:导数计算的缩放系数,默认为:1。

delta:常数项,默认为:0。

borderType:边界样式,使用默认即可。

import cv2img = cv2.imread('jin.png')
dst_x = cv2.Sobel(src=img,ddepth=cv2.CV_32F,dx=1,dy=0)
dst_y = cv2.Sobel(src=img,ddepth=cv2.CV_32F,dx=0,dy=1)
# 取梯度的绝对值
dst_x = cv2.convertScaleAbs(dst_x)
dst_y = cv2.convertScaleAbs(dst_y)dst = cv2.addWeighted(dst_x,0.5,dst_y,0.5,0)cv2.imshow('img',img)
cv2.imshow('dst',dst)
cv2.waitKey(0)
cv2.destroyAllWindows()

import cv2img = cv2.imread('Lena.png')[::2,::2,:]
dst_x = cv2.Sobel(src=img,ddepth=cv2.CV_32F,dx=1,dy=0)
dst_y = cv2.Sobel(src=img,ddepth=cv2.CV_32F,dx=0,dy=1)
# 取梯度的绝对值
dst_x = cv2.convertScaleAbs(dst_x)
dst_y = cv2.convertScaleAbs(dst_y)dst = cv2.addWeighted(dst_x,0.5,dst_y,0.5,0)cv2.imshow('img',img)
cv2.imshow('Sobel',dst)
cv2.waitKey(0)
cv2.destroyAllWindows()

二、Scharr 算子 

img = cv2.Scharr(src=*,ddepth=*,dx=*,dy=*,ksize=*,scale=*,delta=*,borderType=*)

img:目标图像。

src:原始图像。

ddepth:目标图像深度,-1 代表与原始图像深度相同。

dx、dy:x或y 轴方向的求导阶数,可以为:0、1、3 等。0 表示不求导。

ksize:Soble核大小。

scale:导数计算的缩放系数,默认为:1。

delta:常数项,默认为:0。

borderType:边界样式,使用默认即可。

import cv2img = cv2.imread('Lena.png')[::2,::2,:]
cv2.imshow('img',img)
# Sobel 算子
dst_x = cv2.Sobel(src=img,ddepth=cv2.CV_32F,dx=1,dy=0)
dst_y = cv2.Sobel(src=img,ddepth=cv2.CV_32F,dx=0,dy=1)
dst_x = cv2.convertScaleAbs(dst_x) # 取梯度的绝对值
dst_y = cv2.convertScaleAbs(dst_y)
dst_Sobel = cv2.addWeighted(dst_x,0.5,dst_y,0.5,0)
cv2.imshow('Sobel',dst_Sobel)# Scharr 算子
dst_x = cv2.Scharr(src=img,ddepth=cv2.CV_32F,dx=1,dy=0)
dst_y = cv2.Scharr(src=img,ddepth=cv2.CV_32F,dx=0,dy=1)
dst_x = cv2.convertScaleAbs(dst_x) # 取梯度的绝对值
dst_y = cv2.convertScaleAbs(dst_y)
dst_Scharr = cv2.addWeighted(dst_x,0.5,dst_y,0.5,0)
cv2.imshow('Scharr',dst_Scharr)cv2.waitKey(0)
cv2.destroyAllWindows()

三、Laplacian 算子 

img = cv2.Laplacian(src=*,ddepth=*,ksize=*,scale=*,delta=*,borderType=*)

img:目标图像。

src:原始图像。

ddepth:目标图像深度,-1 代表与原始图像深度相同。

ksize:Soble核大小。

scale:导数计算的缩放系数,默认为:1。

delta:常数项,默认为:0。

borderType:边界样式,使用默认即可。

import cv2img = cv2.imread('Lena.png')[::2,::2,:]
cv2.imshow('img',img)
# Sobel 算子
dst_x = cv2.Sobel(src=img,ddepth=cv2.CV_32F,dx=1,dy=0)
dst_y = cv2.Sobel(src=img,ddepth=cv2.CV_32F,dx=0,dy=1)
dst_x = cv2.convertScaleAbs(dst_x) # 取梯度的绝对值
dst_y = cv2.convertScaleAbs(dst_y)
dst_Sobel = cv2.addWeighted(dst_x,0.5,dst_y,0.5,0)
cv2.imshow('Sobel',dst_Sobel)# Sobel 算子
dst_x = cv2.Scharr(src=img,ddepth=cv2.CV_32F,dx=1,dy=0)
dst_y = cv2.Scharr(src=img,ddepth=cv2.CV_32F,dx=0,dy=1)
dst_x = cv2.convertScaleAbs(dst_x) # 取梯度的绝对值
dst_y = cv2.convertScaleAbs(dst_y)
dst_Scharr = cv2.addWeighted(dst_x,0.5,dst_y,0.5,0)
cv2.imshow('Scharr',dst_Scharr)# Laplacian 算子
dst = cv2.Laplacian(src=img,ddepth=cv2.CV_32F,ksize=3)
dst_Laplacian = cv2.convertScaleAbs(dst_x) # 取梯度的绝对值
cv2.imshow('Laplacian',dst_Laplacian)cv2.waitKey(0)
cv2.destroyAllWindows()

四、Canny 边缘检测  

img = cv2.Canny(image=*,edges=*,threshold1=*,threshold2=*,apertureSize=*,L2gradient=False)

img:目标图像。

image:原始图像。

edges:边缘数。

threshold1、threshold2:minVal 和 maxVal。

apertureSize:运算符大小。

L2gradient:梯度公式:默认为False,G = \left | G_{x} \right |+\left | G_{y} \right |;如果为Ture则:G = \sqrt{G_{x}^{2}+G_{y}^{2}}

import cv2img = cv2.imread('Lena.png')[::2,::2,:]
cv2.imshow('img',img)
# Sobel 算子
dst_x = cv2.Sobel(src=img,ddepth=cv2.CV_32F,dx=1,dy=0)
dst_y = cv2.Sobel(src=img,ddepth=cv2.CV_32F,dx=0,dy=1)
dst_x = cv2.convertScaleAbs(dst_x) # 取梯度的绝对值
dst_y = cv2.convertScaleAbs(dst_y)
dst_Sobel = cv2.addWeighted(dst_x,0.5,dst_y,0.5,0)
cv2.imshow('Sobel',dst_Sobel)# Sobel 算子
dst_x = cv2.Scharr(src=img,ddepth=cv2.CV_32F,dx=1,dy=0)
dst_y = cv2.Scharr(src=img,ddepth=cv2.CV_32F,dx=0,dy=1)
dst_x = cv2.convertScaleAbs(dst_x) # 取梯度的绝对值
dst_y = cv2.convertScaleAbs(dst_y)
dst_Scharr = cv2.addWeighted(dst_x,0.5,dst_y,0.5,0)
cv2.imshow('Scharr',dst_Scharr)# Laplacian 算子
dst = cv2.Laplacian(src=img,ddepth=cv2.CV_32F,ksize=3)
dst_Laplacian = cv2.convertScaleAbs(dst_x) # 取梯度的绝对值
cv2.imshow('Laplacian',dst_Laplacian)# Canny 算子
dst_Canny = cv2.Canny(image=img,threshold1=50,threshold2=100)
cv2.imshow('Canny',dst_Canny)cv2.waitKey(0)
cv2.destroyAllWindows()

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/497438.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Github优质项目推荐(第十期)

文章目录 Github优质项目推荐(第十期)一、【postiz-app】,14.6k stars - 您的终极 AI 社交媒体调度工具二、【lobe-chat】,50.1k stars - AI 聊天框架三、【cobalt】,22.1k stars - 媒体下载器四、【build-your-own-x】…

【Linux】:Linux网络编程基础

1 网络基础概念 计算机网络背景 网络发展 独立模式:计算机之间相互独立; 网络互联:多台计算机连接在一起,完成数据共享 局域网LAN:计算机数量更多了,通过交换机和路由器连接在一起 广域网WAN:将远隔千里的计算机都连在一起 所谓"局域网"和"广域网"只是…

基于Golang的博客系统的设计与实现

全文字数:6040 全文字符数:3753 正文字数:5296 正文字符数:3176 图片数:8 表格数:10 Abstract With the continuous development of the Internet, more and more internet developers will use blogs to…

Type-C接口的拍摄云台

在摄影与摄像的世界里,稳定性是确保画面流畅、清晰的关键因素之一。无论是专业摄影师还是摄影爱好者,都深知在拍摄过程中,任何微小的抖动都可能对最终作品产生不可忽视的影响。为了克服这一挑战,拍摄云台应运而生,成为…

【Go】:Sentinel 动态数据源配置指南

前言 在现代微服务架构中,流量控制是确保系统高可用性和稳定性的关键。Sentinel 是一款由阿里巴巴开源的流量控制组件,它不仅支持熔断降级和流量整形,还能通过动态数据源(如本地文件或 Nacos)加载规则,从而…

密钥登录服务器

1. 生成 SSH 密钥对 如果您还没有生成密钥对,可以使用以下命令生成: ssh-keygen 在 root 用户的家目录中生成了一个 .ssh 的隐藏目录,内含两个密钥文件:id_rsa 为私钥,id_rsa.pub 为公钥。 在提示时,您可…

Apriori关联规则算法 HNUST【数据分析技术】(2025)

1.理论知识 Apriori是一种常用的数据关联规则挖掘方法,它可以用来找出数据集中频繁出现的数据集合。该算法第一次实现在大数据集上的可行的关联规则提取,其核心思想是通过连接产生候选项及其支持度,然后通过剪枝生成频繁项集。 Apriori算法的…

2025最新版Java面试八股文大全

一、Java并发面试题 1、 ThreadLocal 1.1 谈谈你对ThreadLocal的理解? ThreadLocal的作用主要是做数据隔离,填充的数据只属于当前线程,变量的数据对别的线程而言是相对隔离的。它不是针对程序的全局变量,只是针对当前线程的全局…

tryhackme-Cyber Security 101-Cryptography-Cryptography Basics(加密基础)

目的:了解加密和对称加密的基础知识。 任务1:介绍 你有没有想过如何防止第三方阅读你的消息?您的应用程序 或 Web 浏览器如何与远程服务器建立安全通道?安全是指没有人可以读取或更改交换的数据;此外,我们可以确信我们…

40.2 预聚合和prometheus-record使用

本节重点介绍 : downsample降采样可以降低查询数据量 prometheus原生不支持downsample 实时查询/聚合 VS 预查询/聚合的优缺点 实时查询/聚合条件随意组合,性能差预查询/聚合 性能好,聚合条件需要提前定义 prometheus的预查询/聚合配置举例 downsample…

JavaEE 3大组件 Listener Servlet Filter

1. Listener不熟悉 2. Servlet Servlet: Server Applet,翻译为运行在服务端的Java小程序,是sun公司提供一套规范( 接口 ),用来定义我们的代码怎么写才能被tomcat识别。 本质:接口,一个类想要被tomcat正确识别&…

jmeter并发用户逐步递增压测找性能拐点

jmeter并发用户逐步递增压测找性能拐点 目的: 使用逐层递增的并发压力进行测试,找到单功能的性能拐点(一般需要包含四组测试结果,拐点前一组,拐点一组,拐点后两组),统计响应时间、…

overleaf中文生僻字显示不正确,显示双线F

我是不想换全文字体的,只是一个生僻字显示不出来,就想要像word一样,把这个生僻字用包含这个生僻字的字体来显示就好了。 解决步骤: 1、使用如下宏包: \usepackage{xeCJK} %声明宏包,主要用于支持在XeTeX…

音视频入门基础:MPEG2-TS专题(24)——FFmpeg源码中,显示TS流每个packet的pts、dts的实现

音视频入门基础:MPEG2-TS专题系列文章: 音视频入门基础:MPEG2-TS专题(1)——MPEG2-TS官方文档下载 音视频入门基础:MPEG2-TS专题(2)——使用FFmpeg命令生成ts文件 音视频入门基础…

Boost之log日志使用

不讲理论,直接上在程序中可用代码: 一、引入Boost模块 开发环境:Visual Studio 2017 Boost库版本:1.68.0 安装方式:Nuget 安装命令: #只安装下面几个即可 Install-package boost -version 1.68.0 Install…

QWidget应用封装为qt插件,供其他qt应用调用

在之前的文章中,有介绍通过QProcess的方式启动QWidget应用,然后将其窗口嵌入到其他的qt应用中,作为子窗口使用.这篇文章主要介绍qt插件的方式将QWidget应用的窗口封装为插件,然后作为其他Qt应用中的子窗口使用. 插件优点: 与主程序为同一个进程,免去了进程间繁琐的通信方式,…

大数据-261 实时数仓 - 业务数据库表结构 交易订单、订单产品、产品分类、商家店铺、地域组织表

点一下关注吧!!!非常感谢!!持续更新!!! Java篇开始了! MyBatis 更新完毕目前开始更新 Spring,一起深入浅出! 目前已经更新到了: H…

Pyside6 在 pycharm 中的配置

打开文件->设置 找到 工具->外部工具 点击 号 创建一个外部工具 QtDesigner 名称:QtDesigner 程序:D:\miniconda\envs\ergoAI-qt\Lib\site-packages\PySide6\designer.exe 实参:$FileName$ 工作目录:$FileDir$ PyUIC 名称&#xf…

Linux系统编程——线程

目录 一、前言 二、线程 1、线程的理解 三、线程相关的接口 1、线程的创建 2、线程的等待 3、实验 四、总结 1、线程优点 2、线程缺点 3、线程异常 4、Linux下的进程与线程对比 一、前言 之前的文章中我们已经对进程相关的概念做了认识,从创建进程、子进…

SD ComfyUI工作流 对人物图像进行抠图并替换背景

文章目录 人物抠图与换背景SD模型Node节点工作流程工作流下载效果展示人物抠图与换背景 此工作流旨在通过深度学习模型完成精确的人物抠图及背景替换操作。整个流程包括图像加载、遮罩生成、抠图处理、背景替换以及最终的图像优化。其核心基于 SAM(Segment Anything Model)与…