多元统计分析练习题3

从总体 A A A B B B 中分别抽取 n = 10 n=10 n=10 个样本

假设 A , B A,B A,B 协方差矩阵相同,并且服从多元正态分布

计算得到的样本均值和样本离差阵分别为

X ‾ A = ( 1 , 2 , 3 ) T , V B = d i a g ( 1 , 1 , 1 ) X ‾ B = ( 1.5 , 2.5 , 3.5 ) T , V B = d i a g ( 3 , 3 , 3 ) \overline{X}_A=(1,2,3)^T,V_B=diag(1,1,1)\\ \overline{X}_B=(1.5,2.5,3.5)^T,V_B=diag(3,3,3) XA=(1,2,3)T,VB=diag(1,1,1)XB=(1.5,2.5,3.5)T,VB=diag(3,3,3)

(1)检验 B B B 总体的均值

H 0 : μ B = ( 1.2 , 2.2 , 3.2 ) T H 1 : μ B ≠ ( 1.2 , 2.2 , 3.2 ) T H_0:\mu_B=(1.2,2.2,3.2)^T\\ H_1:\mu_B\ne(1.2,2.2,3.2)^T H0:μB=(1.2,2.2,3.2)TH1:μB=(1.2,2.2,3.2)T

T 2 = ( n − 1 ) n ( X ‾ B − μ B ) ′ V B − 1 ( X ‾ B − μ B ) = 8.1 T^2=(n-1)n(\overline{X}_B-\mu_B)'V^{-1}_B(\overline{X}_B-\mu_B)=8.1 T2=(n1)n(XBμB)VB1(XBμB)=8.1

根据 F F F 分布和 T 2 T^2 T2 分布的关系

F = n − p ( n − 1 ) p T 2 = 2.1 ∼ F ( p , n − p ) = F ( 3 , 7 ) F=\frac{n-p}{(n-1)p}T^2=2.1\sim F(p,n-p)=F(3,7) F=(n1)pnpT2=2.1F(p,np)=F(3,7)

P { F > 2.1 } = 0.1887 > 0.05 P\{F>2.1\}=0.1887>0.05 P{F>2.1}=0.1887>0.05

故接受 H 0 H_0 H0

(2)检验 A A A B B B 的均值是否相等

H 0 : μ A = μ B H 1 : μ A ≠ μ B H_0:\mu_A=\mu_B\\ H_1:\mu_A\ne\mu_B H0:μA=μBH1:μA=μB

T 2 = n 1 n 2 n 1 + n 2 ( X ‾ A − X ‾ B ) ′ ( A 1 + A 2 n 1 + n 2 − 2 ) − 1 ( X ‾ A − X ‾ B ) = 16.875 T^2=\frac{n_1n_2}{n_1+n_2}(\overline{X}_A-\overline{X}_B)' \bigg(\frac{A_1+A_2}{n_1+n_2-2}\bigg)^{-1} (\overline{X}_A-\overline{X}_B)=16.875 T2=n1+n2n1n2(XAXB)(n1+n22A1+A2)1(XAXB)=16.875

F = ( n 1 + n 2 − 2 ) − p + 1 ( n 1 + n 2 − 2 ) p T 2 = 5 ∼ F ( p , n 1 + n 2 − p − 1 ) = F ( 3 , 16 ) F=\frac{(n_1+n_2-2)-p+1}{(n_1+n_2-2)p}T^2=5\sim F(p,n_1+n_2-p-1) =F(3,16) F=(n1+n22)p(n1+n22)p+1T2=5F(p,n1+n2p1)=F(3,16)

P { F > 5 } = 0.0124 < 0.05 P\{F>5\}=0.0124<0.05 P{F>5}=0.0124<0.05

故拒绝 H 0 H_0 H0

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/497964.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

跟着问题学18——大模型基础transformer模型详解(4)解码器

3 Decoder层 图中可以看到&#xff0c;解码器Decoder其实和编码器Encoder大同小异&#xff0c;核心区别是在最下面额外多了一个掩码多头注意力层masked mutil-head attetion。在解码器中&#xff0c;自注意力层仅被允许“注意”输出序列中前面的单词信息。这是通过在自注意力计…

day-102 二叉树中的链表

思路 DFS,先将链表转换为字符串s在进行匹配 解题过程 对二叉树进行遍历&#xff0c;每到一个新节点判断当前的字符串t长度是否大于等于的长度&#xff0c;如果满足&#xff0c;再将t从末尾截取s.length()长度的子串与s进行匹配&#xff0c;若匹配成功&#xff0c;结果为true&a…

RACI矩阵在项目管理中的应用:优化任务管理

在团队合作中&#xff0c;最怕的就是责任不清、任务分工混乱。谁该做什么&#xff0c;谁对结果负责&#xff0c;谁需要提供帮助&#xff0c;谁需要被通知&#xff1f;如果这些问题没有理清楚&#xff0c;就很容易出现任务没完成、团队内耗或者“甩锅”的情况。RACI责任矩阵正是…

uniapp - 小程序实现摄像头拍照 + 水印绘制 + 反转摄像头 + 拍之前显示时间+地点 + 图片上传到阿里云服务器

前言 uniapp&#xff0c;碰到新需求&#xff0c;反转摄像头&#xff0c;需要在打卡的时候对上传图片加上水印&#xff0c;拍照前就显示当前时间日期地点&#xff0c;拍摄后在呈现刚才拍摄的图加上水印&#xff0c;最好还需要将图片上传到阿里云。 声明 水印部分代码是借鉴的…

Fetch处理大模型流式数据请求与解析

为什么有的大模型可以一次返回多个 data&#xff1f; Server-Sent Events (SSE)&#xff1a;允许服务器连续发送多个 data: 行&#xff0c;每个代表一个独立的数据块。 流式响应&#xff1a;大模型服务通常以流式响应方式返回数据&#xff0c;提高响应速度。 批量处理&#x…

怎么在电脑桌面上设置备忘录,桌面工作提醒小工具哪个好?

在现代的工作和生活中&#xff0c;我们经常需要记录重要的事项和提醒。而在电脑上设置备忘录&#xff0c;无疑是最方便和有效的方法之一。那么&#xff0c;怎么在电脑桌面上设置备忘录&#xff1f;又有哪个工作提醒小工具值得推荐呢&#xff1f; 以Windows系统为例&#xff0c…

EasyExcel简介和读写操作

EasyExcel简介 官网地址&#xff1a;EasyExcel官方文档 - 基于Java的Excel处理工具 | Easy Excel 官网 EasyExcel 的主要特点如下&#xff1a; 1、高性能&#xff1a;EasyExcel 采用了异步导入导出的方式&#xff0c;并且底层使用 NIO 技术实现&#xff0c;使得其在导入导出大…

【网络协议】路由信息协议 (RIP)

未经许可&#xff0c;不得转载。 路由信息协议&#xff08;Routing Information Protocol&#xff0c;简称 RIP&#xff09;是一种使用跳数&#xff08;hop count&#xff09;作为路由度量标准的路由协议&#xff0c;用于确定源网络和目标网络之间的最佳路径。 文章目录 什么是…

MySQL5.7.26-Linux-安装(2024.12)

文章目录 1.下载压缩包1.访问MySQL版本归档2.找到5.7.26并下载3.百度网盘 2.Linux安装1.卸载原来的MySQL8.0.26&#xff08;如果没有则无需在意&#xff09;1.查看所有mysql的包2.批量卸载3.删除残留文件**配置文件**&#xff08;默认路径&#xff09;&#xff1a; 4.**验证卸载…

《云原生安全攻防》-- K8s安全配置:CIS安全基准与kube-bench工具

在本节课程中&#xff0c;我们来了解一下K8s集群的安全配置&#xff0c;通过对CIS安全基准和kube-bench工具的介绍&#xff0c;可以快速发现K8s集群中不符合最佳实践的配置项&#xff0c;及时进行修复&#xff0c;从而来提高集群的安全性。 在这个课程中&#xff0c;我们将学习…

Flink源码解析之:如何根据算法生成StreamGraph过程

Flink源码解析之&#xff1a;如何根据算法生成StreamGraph过程 在我们日常编写Flink应用的时候&#xff0c;会首先创建一个StreamExecutionEnvironment.getExecutionEnvironment()对象&#xff0c;在添加一些自定义处理算子后&#xff0c;会调用env.execute来执行定义好的Flin…

RoboMIND:多体现基准 机器人操纵的智能规范数据

我们介绍了 RoboMIND&#xff0c;这是机器人操纵的多体现智能规范数据的基准&#xff0c;包括 4 个实施例、279 个不同任务和 61 个不同对象类别的 55k 真实世界演示轨迹。 工业机器人企业 埃斯顿自动化 | 埃夫特机器人 | 节卡机器人 | 珞石机器人 | 法奥机器人 | 非夕科技 | C…

sentinel集成nacos启动报[check-update] get changed dataId error, code: 403错误排查及解决

整合nacos报403错误 因为平台写的一个限流代码逻辑有问题&#xff0c;所以准备使用sentinel来限流。平台依赖里面已经引入了&#xff0c;之前也测试过&#xff0c;把sentinel关于nacos的配置加上后&#xff0c;启动一直输出403错误 [fixed-10.0.20.188_8848-test] [check-upda…

【Redis】 数据淘汰策略

面试官询问缓存过多而内存有限时内存被占满的处理办法&#xff0c;引出 Redis 数据淘汰策略。 数据淘汰策略与数据过期策略不同&#xff0c; 过期策略针对设置过期时间的 key 删除&#xff0c; 淘汰策略是在内存不够时按规则删除内存数据。 八种数据淘汰策略介绍 no evision&…

【畅购商城】详情页模块之评论

目录 接口 分析 后端实现&#xff1a;JavaBean 后端实现 前端实现 接口 GET http://localhost:10010/web-service/comments/spu/2?current1&size2 { "code": 20000, "message": "查询成功", "data": { "impressions&q…

Kafka高性能设计

高性能设计概述 Kafka高性能是多方面协同的结果&#xff0c;包括集群架构、分布式存储、ISR数据同步及高效利用磁盘和操作系统特性等。主要体现在消息分区、顺序读写、页缓存、零拷贝、消息压缩和分批发送六个方面。 消息分区 存储不受单台服务器限制&#xff0c;能处理更多数据…

HTML——13.超链接

<!DOCTYPE html> <html><head><meta charset"UTF-8"><title>超链接</title></head><body><!--超链接:从一个网页链接到另一个网页--><!--语法&#xff1a;<a href"淘宝网链接的地址"> 淘宝…

LVS 负载均衡原理 | 配置示例

注&#xff1a;本文为 “ LVS 负载均衡原理 | 配置” 相关文章合辑。 部分内容已过时&#xff0c;可以看看原理实现。 使用 LVS 实现负载均衡原理及安装配置详解 posted on 2017-02-12 14:35 肖邦 linux 负载均衡集群是 load balance 集群的简写&#xff0c;翻译成中文就是负…

Docker 快速搭建 GBase 8s数据库服务

1.查看Gbase 8s镜像版本 可以去到docker hub网站搜索&#xff1a;gbase8s liaosnet/gbase8s如果无法访问到该网站&#xff0c;可以通过docker search搜索 docker search gbase8s2.拉取Gbase 8s镜像 以下演示的版本是目前官网最新版本Gbase8sV8.8_3.5.1 docker pull liaosn…

使用Lodash工具库的orderby和sortby进行排序的区别

简介 _.orderBy 和 _.sortBy 是 Lodash 库中用于排序数组的两个函数。 区别 _.orderBy 允许你指定一个或多个属性来排序&#xff0c;并为每个属性指定排序方向&#xff08;升序或降序&#xff09;。默认所有值为升序排&#xff0c;指定为"desc" 降序&#xff0c…