从总体 A A A 和 B B B 中分别抽取 n = 10 n=10 n=10 个样本
假设 A , B A,B A,B 协方差矩阵相同,并且服从多元正态分布
计算得到的样本均值和样本离差阵分别为
X ‾ A = ( 1 , 2 , 3 ) T , V B = d i a g ( 1 , 1 , 1 ) X ‾ B = ( 1.5 , 2.5 , 3.5 ) T , V B = d i a g ( 3 , 3 , 3 ) \overline{X}_A=(1,2,3)^T,V_B=diag(1,1,1)\\ \overline{X}_B=(1.5,2.5,3.5)^T,V_B=diag(3,3,3) XA=(1,2,3)T,VB=diag(1,1,1)XB=(1.5,2.5,3.5)T,VB=diag(3,3,3)
(1)检验 B B B 总体的均值
H 0 : μ B = ( 1.2 , 2.2 , 3.2 ) T H 1 : μ B ≠ ( 1.2 , 2.2 , 3.2 ) T H_0:\mu_B=(1.2,2.2,3.2)^T\\ H_1:\mu_B\ne(1.2,2.2,3.2)^T H0:μB=(1.2,2.2,3.2)TH1:μB=(1.2,2.2,3.2)T
T 2 = ( n − 1 ) n ( X ‾ B − μ B ) ′ V B − 1 ( X ‾ B − μ B ) = 8.1 T^2=(n-1)n(\overline{X}_B-\mu_B)'V^{-1}_B(\overline{X}_B-\mu_B)=8.1 T2=(n−1)n(XB−μB)′VB−1(XB−μB)=8.1
根据 F F F 分布和 T 2 T^2 T2 分布的关系
F = n − p ( n − 1 ) p T 2 = 2.1 ∼ F ( p , n − p ) = F ( 3 , 7 ) F=\frac{n-p}{(n-1)p}T^2=2.1\sim F(p,n-p)=F(3,7) F=(n−1)pn−pT2=2.1∼F(p,n−p)=F(3,7)
P { F > 2.1 } = 0.1887 > 0.05 P\{F>2.1\}=0.1887>0.05 P{F>2.1}=0.1887>0.05
故接受 H 0 H_0 H0
(2)检验 A A A 和 B B B 的均值是否相等
H 0 : μ A = μ B H 1 : μ A ≠ μ B H_0:\mu_A=\mu_B\\ H_1:\mu_A\ne\mu_B H0:μA=μBH1:μA=μB
T 2 = n 1 n 2 n 1 + n 2 ( X ‾ A − X ‾ B ) ′ ( A 1 + A 2 n 1 + n 2 − 2 ) − 1 ( X ‾ A − X ‾ B ) = 16.875 T^2=\frac{n_1n_2}{n_1+n_2}(\overline{X}_A-\overline{X}_B)' \bigg(\frac{A_1+A_2}{n_1+n_2-2}\bigg)^{-1} (\overline{X}_A-\overline{X}_B)=16.875 T2=n1+n2n1n2(XA−XB)′(n1+n2−2A1+A2)−1(XA−XB)=16.875
F = ( n 1 + n 2 − 2 ) − p + 1 ( n 1 + n 2 − 2 ) p T 2 = 5 ∼ F ( p , n 1 + n 2 − p − 1 ) = F ( 3 , 16 ) F=\frac{(n_1+n_2-2)-p+1}{(n_1+n_2-2)p}T^2=5\sim F(p,n_1+n_2-p-1) =F(3,16) F=(n1+n2−2)p(n1+n2−2)−p+1T2=5∼F(p,n1+n2−p−1)=F(3,16)
P { F > 5 } = 0.0124 < 0.05 P\{F>5\}=0.0124<0.05 P{F>5}=0.0124<0.05
故拒绝 H 0 H_0 H0