C 实现植物大战僵尸(四)
C 实现植物大战僵尸,完结撒花(还有个音频稍卡顿的性能问题,待有空优化解决)。目前基本的功能模块已经搭建好了,感兴趣的友友可自行尝试编写后续游戏内容
因为 C 站不能上传动图,所以游戏实际效果可看后续文章更新,插一条试玩视频
后面项目全部源代码会上传至 C 站(待上传)
十三 实现僵尸吃植物
实现和原 UP 有差异,僵尸捕获植物感觉很奇怪,不如设计成植物同样有血量,当植物血量为 0 时,植物死亡
调整植物和僵尸结构体,以及增加变量
/* 僵尸相关结构和变量 */
#define MAX_ZOMBIE_NUM 10
#define MAX_ZOMBIE_DEAD_PIC_NUM 10
#define MAX_ZOMBIE_EAT_PIC_NUM 21
#define MAX_ZOMBIE_PIC_NUM 22
typedef struct Zombie {int x; //当前 X 轴坐标int y; //当前 Y 轴坐标int frameId; //当前图片帧编号int speed; //僵尸移动的速度int row; //僵尸所在行int blood; //默认僵尸血条为 100bool isDead; //僵尸是否死亡bool isEating; //僵尸是否在吃植物, 这些状态改用枚举更好, 待优化bool used; //是否在使用
} Zombie;
Zombie zombies[MAX_ZOMBIE_NUM];
IMAGE imgZombies[MAX_ZOMBIE_PIC_NUM];
IMAGE imgDeadZombies[MAX_ZOMBIE_DEAD_PIC_NUM];
IMAGE imgZombiesEat[MAX_ZOMBIE_EAT_PIC_NUM];/* 植物相关结构和变量 */
typedef struct Plant // 植物结构体
{int type; //植物类型, -1 表示草地int frameId; //表示植物摆动帧int blood; //植物血量
} Plant;
游戏初始化接口 gameInit,加载图片至内存
for (int i = 0; i < MAX_ZOMBIE_EAT_PIC_NUM; ++i) //加载僵尸吃植物图片
{sprintf(name, "res/zm_eat/0/%d.png", i + 1);loadimage(&imgZombiesEat[i], name);
}
游戏更新窗口接口,渲染图片至输出窗口
for (int i = 0; i < MAX_ZOMBIE_NUM; ++i) //渲染僵尸
{if (zombies[i].used) {if (zombies[i].isDead) putimagePNG(zombies[i].x, zombies[i].y + 30, &imgDeadZombies[zombies[i].frameId]);else if (zombies[i].isEating) putimagePNG(zombies[i].x, zombies[i].y + 30, &imgZombiesEat[zombies[i].frameId]);else putimagePNG(zombies[i].x, zombies[i].y + 30, &imgZombies[zombies[i].frameId]);}
}
更新游戏属性的接口,增加 eatPlants
/* 更新游戏属性的接口 */
void updateGame()
{updatePlantsPic();createSunshine();updateSunshine();createZombie();updateZombie();shoot();updateBullets();collsionCheck();eatPlants();
}
/* 移除死亡的植物 */
Plant* plantDeath(Plant* plant)
{assert(plant);if (plant->type == PEA) //释放对应种植植物内存free((PeaShooter*)plant);else if (plant->type == SUNFLOWER)free((SunFlower*)plant);Grass* grassPtr = (Grass*)calloc(1, sizeof(Grass)); //重置为草地assert(grassPtr);grassPtr->plant.type = -1;return (Plant*)grassPtr;
}/* 僵尸吃植物接口 */
void eatPlants()
{PeaShooter* peaShooter = NULL;int row = 0, plantX = 0, zombieCurrX = 0;for (int i = 0; i < MAX_ZOMBIE_NUM; ++i) //遍历是否存在僵尸{if (zombies[i].used && !zombies[i].isDead) //僵尸正在使用中, 且存活{row = zombies[i].row;for (int j = 0; j < GRASS_GRID_COL; ++j) //遍历当前行是否存在植物{if (plants[row][j]->type >= PEA) {plantX = GRASS_LEFT_MARGIN + j * GRASS_GRID_WIDTH + 5; zombieCurrX = zombies[i].x + 80;if (zombieCurrX > plantX + 10 && zombieCurrX < plantX + 60) //当僵尸已经到达植物附近{zombies[i].isEating = true;plants[row][j]->blood -= 1; //植物扣血if (plants[row][j]->blood <= 0) //植物被杀死{plants[row][j] = plantDeath(plants[row][j]); //移除死亡的植物zombies[i].frameId = 0;zombies[i].isEating = false; //僵尸解除吃植物状态}}}}}}
}
最后更新僵尸状态,在这里进行帧处理
void updateZombie()
{static int CallCnt = 0; //延缓函数调用次数if (++CallCnt < 3) return;CallCnt = 0;for (int i = 0; i < MAX_ZOMBIE_NUM; ++i){if (zombies[i].used){if (zombies[i].isDead){if (++zombies[i].frameId >= MAX_ZOMBIE_DEAD_PIC_NUM) //僵尸死亡则更换死亡帧zombies[i].used = false; //重置僵尸状态}else if (zombies[i].isEating){zombies[i].frameId = ++zombies[i].frameId % MAX_ZOMBIE_EAT_PIC_NUM; //僵尸更换图片帧}else{zombies[i].x -= zombies[i].speed; //僵尸行走zombies[i].frameId = ++zombies[i].frameId % MAX_ZOMBIE_PIC_NUM; //僵尸更换图片帧}if (zombies[i].x < 170) //目前先这样写待优化{printf("GAME OVER !");MessageBox(NULL, "over", "over", 0);exit(0);}}}
}
效果展示
僵尸会对一条道路上的植物进行啃食,在啃食期间会正常受到豌豆射手的攻击,啃食结束后,植物死亡
十四 向日葵生成阳光
实现和原 UP 有差异,想保留原随机阳光球逻辑,所以这里是做了兼容处理逻辑,具体实现如下
向日葵结构体增加变量
enum SUN_SHINE_STATUS { UNUSED, PRODUCE, GROUND, COLLECT };/* 向日葵结构体 */
typedef struct SunFlower
{Plant plant;/* 这里也可以使用数组, 一个向日葵有多个阳光球成员*/SunShineBall sunShine; //向日葵生产的阳光球int timeInterval; //向日葵生产阳光的计时器int status; //向日葵生产的阳光球状态float t; //贝塞尔曲线时间点float speed; //阳光球移动速度vector2 p1, p2, p3, p4; //贝塞尔曲线位置点vector2 pCurr; //当前阳光球的位置
} SunFlower;
实现向日葵生产阳光的接口
需要注意的是在收集向日葵生产太阳球时,需要重置贝塞尔曲线
/* 实现向日葵生产太阳球 */
void produceSunShine()
{SunFlower* sunFlower = NULL;for (int i = 0; i < GRASS_GRID_ROW; ++i) //遍历二维指针数组{for (int j = 0; j < GRASS_GRID_COL; ++j){if (plants[i][j]->type == SUNFLOWER){sunFlower = (SunFlower*)plants[i][j];switch (sunFlower->status){case COLLECT:sunFlower->t += sunFlower->speed; //设置贝塞尔曲线开始时间sunFlower->pCurr = sunFlower->p1 +sunFlower->t * (sunFlower->p4 - sunFlower->p1); //构建贝塞尔曲线if (sunFlower->t > 1) { sunShineVal += 25;sunFlower->status = UNUSED;resetVecotrVal(sunFlower, i, j);}break;case GROUND:if (--sunFlower->timeInterval <= 0) //超时则阳光消失{sunFlower->status = UNUSED; //重置状态sunFlower->timeInterval = MAX_TIME_INTERVAL * (4 + rand() % 5);}break;case PRODUCE:sunFlower->t += sunFlower->speed; //设置贝塞尔曲线开始时间sunFlower->pCurr = calcBezierPoint(sunFlower->t,sunFlower->p1, sunFlower->p2, sunFlower->p3, sunFlower->p4); //构建贝塞尔曲线if (sunFlower->t > 1){sunFlower->t = 0;sunFlower->status = GROUND;sunFlower->timeInterval = MAX_TIME_INTERVAL * (4 + rand() % 5);}break;case UNUSED:if (--sunFlower->timeInterval <= 0){sunFlower->status = PRODUCE;sunFlower->timeInterval = MAX_TIME_INTERVAL * (4 + rand() % 5);}break;default:printf("ERROR");break;}}}}
}
/* 重置贝塞尔曲线坐标值 */
void resetVecotrVal(SunFlower* sunFlower, int x, int y)
{assert(sunFlower);if (sunFlower->status == COLLECT){sunFlower->p1 = sunFlower->pCurr;sunFlower->p4 = vector2(262, 0);sunFlower->t = 0;const float distance = dis(sunFlower->p1 - sunFlower->p4);sunFlower->speed = 1.0 / (distance / 16.0);}else if (sunFlower->status == UNUSED){const int distance = (50 + rand() % 50); //只往右抛即可const int currPlantX = GRASS_LEFT_MARGIN + y * GRASS_GRID_WIDTH + 5;const int currPlantY = GRASS_TOP_MARGIN + x * GRASS_GRID_HIGHT + 10;sunFlower->t = 0;sunFlower->timeInterval = MAX_TIME_INTERVAL * (4 + rand() % 5);sunFlower->speed = 0.05;sunFlower->p1 = vector2(currPlantX, currPlantY);sunFlower->p2 = vector2(sunFlower->p1.x + distance * 0.3, sunFlower->p1.y - 100);sunFlower->p3 = vector2(sunFlower->p1.x + distance * 0.7, sunFlower->p1.y - 100);sunFlower->p4 = vector2(currPlantX + distance, currPlantY +imgPlant[SUNFLOWER][0]->getheight() - imgSunShineBall[0].getheight());}
}
在更新游戏属性的接口中调用
/* 更新游戏属性的接口 */
void updateGame()
{updatePlantsPic();createSunshine();produceSunShine();updateSunshine();createZombie();updateZombie();shoot();updateBullets();collsionCheck();eatPlants();
}
其次,在种植向日葵的时候需要进行新增成员的初始化
/* 种植植物接口, 主要释放草格子内存, 二维指针数组对应位置,指向初始化的植物 */
Plant* growPlants(Plant* plant, int type, int x, int y)
{assert(plant);free((Grass*)plant); //释放该位置草格子内存if (type == PEA) //根据类型初始化 PeaShooter{PeaShooter* peaShooter = (PeaShooter*)calloc(1, sizeof(PeaShooter)); //calloc 函数替代 malloc, 省略 memsetassert(peaShooter);peaShooter->shootSpeed = DEFAULT_SHOOT_TIME; //豌豆射击速度, 或者叫豌豆发射子弹的时间间隔, -1 表示可发射子弹peaShooter->plant.blood = 100;return (Plant*)peaShooter;}else if (type == SUNFLOWER) //根据类型初始化 SunFlower{SunFlower* sunFlower = (SunFlower*)calloc(1, sizeof(SunFlower));assert(sunFlower);sunFlower->plant.type = 1;sunFlower->plant.blood = 100;sunFlower->timeInterval = MAX_TIME_INTERVAL * (4 + rand() % 5); //增加游戏随机性/* 初始化贝塞尔曲线 */const int distance = (50 + rand() % 50); //只往右抛即可const int currPlantX = GRASS_LEFT_MARGIN + y * GRASS_GRID_WIDTH + 5;const int currPlantY = GRASS_TOP_MARGIN + x * GRASS_GRID_HIGHT + 10;sunFlower->t = 0;sunFlower->speed = 0.05;sunFlower->p1 = vector2(currPlantX, currPlantY);sunFlower->p2 = vector2(sunFlower->p1.x + distance * 0.3, sunFlower->p1.y - 100);sunFlower->p3 = vector2(sunFlower->p1.x + distance * 0.7, sunFlower->p1.y - 100);sunFlower->p4 = vector2(currPlantX + distance, currPlantY +imgPlant[SUNFLOWER][0]->getheight() - imgSunShineBall[0].getheight());return (Plant*)sunFlower;}
}
在更新阳光球接口,添加新增更新向日葵生产阳光球帧的逻辑
/* 更新随机阳光球接口, 主要更新随机阳光球的图片帧和处理飞跃状态时的 X Y 轴偏移 */
void updateSunshine()
{for (int i = 0; i < MAX_BALLS_NUM; ++i) {if (balls[i].used){if (balls[i].y < balls[i].destination)balls[i].y += 2; //每次移动两个像素else //当阳光下落至目标位置时, 停止移动{if (balls[i].timer < MAX_TIME_INTERVAL) ++balls[i].timer;else balls[i].used = false;}balls[i].frameId = ++balls[i].frameId % SUM_SHINE_PIC_NUM; //修改当前图片帧编号, 并在到达 SUM_SHINE_PIC_NUM 时重置图片帧为 0}else if (balls[i].xOffset) //阳光球处于飞跃状态{if (balls[i].y > 0 && balls[i].x > 262){const float angle = atan((float)(balls[i].y - 0) / (float)(balls[i].x - 262)); //不断调整阳光球的位置坐标balls[i].xOffset = 16 * cos(angle);balls[i].yOffset = 16 * sin(angle);balls[i].x -= balls[i].xOffset;balls[i].y -= balls[i].yOffset;}else{balls[i].xOffset = 0; //阳光球飞至计分器位置, 则将 xOffset 置 0, 且加上 25 积分balls[i].yOffset = 0;sunShineVal += 25;}}}/* 更新向日葵生产的日光 */SunFlower* sunFlower = NULL;for (int i = 0; i < GRASS_GRID_ROW; ++i) //遍历二维指针数组{for (int j = 0; j < GRASS_GRID_COL; ++j){if (plants[i][j]->type == SUNFLOWER){sunFlower = (SunFlower*)plants[i][j];if (sunFlower->status == GROUND || sunFlower->status == PRODUCE)sunFlower->sunShine.frameId = ++sunFlower->sunShine.frameId % SUM_SHINE_PIC_NUM; //修改当前图片帧编号, 并在到达 SUM_SHINE_PIC_NUM 时重置图片帧为 0 }}}
}
在收集随机阳光接口中添加上收集向日葵生产的日光 新增逻辑
/* 收集随机阳光接口 */
void collectSunShine(ExMessage* msg)
{IMAGE* imgSunShine = NULL;for (int i = 0; i < MAX_BALLS_NUM; ++i) //遍历阳光球{if (balls[i].used) //阳光球在使用中{imgSunShine = &imgSunShineBall[balls[i].frameId]; //找到对应的阳光球图片if (msg->x > balls[i].x && msg->x < balls[i].x + imgSunShine->getwidth()&& msg->y > balls[i].y && msg->y < balls[i].y + imgSunShine->getheight()) //判断鼠标移动的位置是否处于当前阳光球的位置{PlaySound("res/audio/sunshine.wav", NULL, SND_FILENAME | SND_ASYNC); //异步播放收集阳光球音效balls[i].used = false; //将阳光球状态更改为未使用 (飞跃状态, 因为 xOffset 赋值了)const float angle = atan((float)(balls[i].y - 0) / (float)(balls[i].x - 262)); //使用正切函数balls[i].xOffset = 16 * cos(angle); //计算 X 轴偏移balls[i].yOffset = 16 * sin(angle); //计算 Y 轴偏移}}}/* 收集向日葵生产的日光 */SunFlower* sunFlower = NULL;for (int i = 0; i < GRASS_GRID_ROW; ++i) //遍历二维指针数组{for (int j = 0; j < GRASS_GRID_COL; ++j){if (plants[i][j]->type == SUNFLOWER){sunFlower = (SunFlower*)plants[i][j];imgSunShine = &imgSunShineBall[sunFlower->sunShine.frameId]; //找到对应的阳光球图片if (sunFlower->status == GROUND) {if (msg->x > sunFlower->pCurr.x && msg->x < sunFlower->pCurr.x + imgSunShine->getwidth()&& msg->y > sunFlower->pCurr.y && msg->y < sunFlower->pCurr.y + imgSunShine->getheight()) //判断鼠标移动的位置是否处于当前阳光球的位置{PlaySound("res/audio/sunshine.wav", NULL, SND_FILENAME | SND_ASYNC); //异步播放收集阳光球音效sunFlower->status = COLLECT;resetVecotrVal(sunFlower, i, j); //更改曲线坐标}}}}}
}
最后只需要在 updateWindow 接口中渲染一下向日葵生产的阳光即可
SunFlower* sunFlower = NULL;
for (int i = 0; i < GRASS_GRID_ROW; ++i) //渲染向日葵阳光
{for (int j = 0; j < GRASS_GRID_COL; ++j){if (plants[i][j]->type == SUNFLOWER){sunFlower = ((SunFlower*)plants[i][j]);if (sunFlower->status > UNUSED){putimagePNG(sunFlower->pCurr.x, sunFlower->pCurr.y,&imgSunShineBall[sunFlower->sunShine.frameId]);}} }
}
效果展示
向日葵可以生产阳光,生产阳光球后会以类似抛物线的形式(贝塞尔曲线)随机掉落在右一格的位置。鼠标移动至阳光球处,阳光将会被收集,阳光值增加 25
十五 片头僵尸展示
优化片头效果,实现函数如下,开局会先展示路边的僵尸
/* 展示界面的僵尸相关变量 */
#define VIEW_ZOMBIE_NUM 9
#define VIEW_ZOMBIE_PIC_NUM 11
IMAGE imgViewZombies[VIEW_ZOMBIE_PIC_NUM];/* 游戏开始前展示僵尸 */
void viewScence()
{int Xmin = WIN_WIDTH - imgBg.getwidth(); //-500vector2 zombieVec[VIEW_ZOMBIE_NUM] = { //展示场景中, 僵尸初始位置{550,80},{530,160},{630,170},{530,200},{515,270},{565,370},{605,340},{705,280},{690,340}};int frameIndexArr[VIEW_ZOMBIE_NUM];for (int i = 0; i < VIEW_ZOMBIE_NUM; ++i)frameIndexArr[i] = rand() % VIEW_ZOMBIE_PIC_NUM;int cycleNum = 0; //利用循环计数, 解决僵尸抖动过快for (int x = 0; x >= Xmin; x -= 2) //缓慢移动展示僵尸{BeginBatchDraw(); //双缓冲解决闪屏putimage(x, 0, &imgBg);++cycleNum; //当循环十次后, 更换每只僵尸的帧图片for (int i = 0; i < VIEW_ZOMBIE_NUM; ++i) //循环僵尸个数{putimagePNG(zombieVec[i].x - Xmin + x, zombieVec[i].y, &imgViewZombies[frameIndexArr[i]]); //渲染僵尸图片if (cycleNum > 2)frameIndexArr[i] = (++frameIndexArr[i]) % VIEW_ZOMBIE_PIC_NUM; //更换帧图}if (cycleNum > 2) cycleNum = 0; //重置循环计数EndBatchDraw();Sleep(5);}//停留 3 S 展示for (int k = 0; k < MAX_TIME_INTERVAL / 2; ++k){BeginBatchDraw(); //双缓冲解决闪屏putimage(Xmin, 0, &imgBg); //相当于把图片向左移动 500 个像素for (int i = 0; i < VIEW_ZOMBIE_NUM; ++i) //循环僵尸个数{putimagePNG(zombieVec[i].x, zombieVec[i].y, &imgViewZombies[frameIndexArr[i]]); //渲染僵尸图片frameIndexArr[i] = (++frameIndexArr[i]) % VIEW_ZOMBIE_PIC_NUM; //更换帧图}EndBatchDraw();Sleep(30);}//移动回主界面cycleNum = 0;for (int x = Xmin; x <= 0; x += 2){BeginBatchDraw(); //双缓冲解决闪屏putimage(x, 0, &imgBg);++cycleNum; //当循环十次后, 更换每只僵尸的帧图片for (int i = 0; i < VIEW_ZOMBIE_NUM; ++i) //循环僵尸个数{if (zombieVec[i].x - Xmin + x > 0){putimagePNG(zombieVec[i].x - Xmin + x, zombieVec[i].y, &imgViewZombies[frameIndexArr[i]]); //渲染僵尸图片if (cycleNum > 2)frameIndexArr[i] = (++frameIndexArr[i]) % VIEW_ZOMBIE_PIC_NUM; //更换帧图}}if (cycleNum > 2) cycleNum = 0; //重置循环计数EndBatchDraw();Sleep(5);}
}
在主函数中调用
效果展示
游戏开场会缓慢的移动窗口至马路边,停顿观察路边僵尸(僵尸会一摇一摇的抖动),然后游戏镜头会再缓慢移动至原界面
十六 植物栏滑动
在上述游戏界面拉回主界面过程中,植物菜单栏会缓慢滑动出现,具体实现如下
/* 植物栏滑动 */
void barsDown()
{int imgBarHeight = imgBar.getheight();for (int i = -imgBarHeight; i <= 6; ++i) //这里因为微调了植物卡片位置为 6{BeginBatchDraw();putimage(0, 0, &imgBg); //渲染地图if (i <= 0) putimagePNG(250, i, &imgBar); //但植物栏的位置为 0else putimagePNG(250, 0, &imgBar); //渲染植物栏for (int j = 0; j < PLANT_CNT; ++j) //遍历植物卡牌putimage(PIC_LEFT_MARGIN + j * PIC_WIDTH, i, &imgCards[j]); //渲染植物卡牌 EndBatchDraw();Sleep(10);}Sleep(1000);
}
在主函数中调用
效果展示
在上述开场游戏界面拉回主界面过程中,植物菜单栏会缓慢滑动出现
十六 判断游戏结束
相关结构和变量
/* 游戏输赢相关的结构和变量 */
enum { GAMEING, WIN, FAIL };
#define INGAME_ZOMBIE_NUM 15
int killZombies = 0;
int gameStatus = GAMEING;
创建僵尸接口时判断杀死的僵尸是否满足该局僵尸的数目了,如果是则不再创建
/* 创建僵尸接口, 主要用于初始化僵尸 */
void createZombie()
{if (killZombies >= INGAME_ZOMBIE_NUM) return;static int zombieCallCnt = 0; //延缓函数调用次数并增加些随机性static int randZombieCallCnt = 500;if (zombieCallCnt++ < randZombieCallCnt) return;randZombieCallCnt = 300 + rand() % 200;zombieCallCnt = 0;for (int i = 0; i < MAX_ZOMBIE_NUM; ++i) //找一个未在界面的僵尸初始化{if (!zombies[i].used){zombies[i].row = rand() % GRASS_GRID_ROW; //僵尸出现在第几行(从 0 开始)zombies[i].x = WIN_WIDTH;zombies[i].y = zombies[i].row * GRASS_GRID_HIGHT; //出现在草地的任意一格上zombies[i].frameId = 0;zombies[i].speed = 1; //僵尸的移动速度zombies[i].blood = 100; //默认僵尸血条为 100zombies[i].isDead = false; //僵尸存活zombies[i].isEating = false;zombies[i].used = true;break; //结束循环}}
}
在原子弹和僵尸碰撞接口 collsionCheck 中 ,若杀死僵尸数大于或等于该局游戏僵尸数目,则改变游戏状态
原更新僵尸接口中,若僵尸已移动至最左端,则游戏失败
最后在 main 函数中调用检验游戏状态的函数,即可判断游戏输赢
checkGameOver 会用到 在线 MP3 音频转 WAV
/* 判断游戏输赢 */
IMAGE imgGameOver; //工具栏图片
bool checkGameOver()
{if (gameStatus == WIN){Sleep(500);PlaySound("res/audio/win.wav", NULL, SND_FILENAME | SND_ASYNC); //异步播放音效loadimage(0, "res/gameWin.png");return true;}else if (gameStatus == FAIL){Sleep(500);PlaySound("res/audio/lose.wav", NULL, SND_FILENAME | SND_ASYNC); //异步播放音效loadimage(&imgGameOver, "res/gameFail.png");putimagePNG(300, 140, &imgGameOver);return true;}return false;
}/* 主函数 */
int main()
{gameInit(); //不能把 startUI 放在 gameInit 前, gameInit 包含了创建游戏图形窗口startUI();viewScence();barsDown();updateWindow(); //窗口视图展示int timer = 0; //用以计时 20 毫秒更新一次while (1){userClick(); //监听窗口鼠标事件timer += getDelay();if (timer > 20){updateWindow(); //更新窗口视图updateGame(); //更新游戏动画帧if (checkGameOver()) break; //判断游戏输赢timer = 0;}}destroyPlants(); //释放内存system("pause");return 0;
}
效果展示
一些游戏体验优化
① 豌豆不能太提前射击僵尸
在射击接口 shoot 里,校验僵尸和窗口右端的距离即可
② 卡牌太阳值不够不能选取
如果阳光值不够选取植物,则渲染为灰色,阳光值不够不能种植该植物;且植物有冷却时间,在冷却时间内植物不能种植
/* 游戏体验优化, 阳光值不足或植物冷却时不能种植 */
IMAGE imgBlackCards[PLANT_CNT]; //植物不能种植卡片
IMAGE imgFreezeCards[PLANT_CNT]; //植物冷却卡片
#define PEA_FREEZE_TIME 500
#define SUMFLOWER_FREEZE_TIME 200
static int peaPlantInterval = 500;
static int sumFlowerPlantInterval = 200;enum PLANT_CARD_STATUS { BRIGHT, GREY, FREEZE };
int plantCardStatus[PLANT_CNT]; //植物卡片状态数组
更新植物卡牌状态函数代码
/* 更新植物卡牌状态 */
void updatePlantCardStatus()
{for (int i = 0; i < PLANT_CNT; ++i) //判断植物卡牌状态{if (i == PEA){if (sunShineVal < 100) //阳光值不够plantCardStatus[i] = GREY; //卡片灰色else if (sunShineVal >= 100 && peaPlantInterval < PEA_FREEZE_TIME) //阳光值够但在冷却时间内plantCardStatus[i] = FREEZE; //卡片冻结elseplantCardStatus[i] = BRIGHT; //卡片原色}else if (i == SUNFLOWER){if (sunShineVal < 50)plantCardStatus[i] = GREY;else if (sunShineVal >= 50 && sumFlowerPlantInterval < SUMFLOWER_FREEZE_TIME)plantCardStatus[i] = FREEZE;elseplantCardStatus[i] = BRIGHT;}}
}
修改植物栏滑动逻辑
/* 植物栏滑动 */
void barsDown()
{int imgBarHeight = imgBar.getheight();updatePlantCardStatus();for (int i = -imgBarHeight; i <= 6; ++i) //这里因为微调了植物卡片位置为 6{BeginBatchDraw();putimage(0, 0, &imgBg); //渲染地图if (i <= 0) putimagePNG(250, i, &imgBar); //但植物栏的位置为 0else putimagePNG(250, 0, &imgBar); //渲染植物栏for (int j = 0; j < PLANT_CNT; ++j) //遍历植物卡牌{if (plantCardStatus[j] == BRIGHT)putimage(PIC_LEFT_MARGIN + j * PIC_WIDTH, i, &imgCards[j]); //渲染植物卡牌else if (plantCardStatus[j] == GREY)putimage(PIC_LEFT_MARGIN + j * PIC_WIDTH, i, &imgBlackCards[j]);elseputimage(PIC_LEFT_MARGIN + j * PIC_WIDTH, i, &imgFreezeCards[j]);} EndBatchDraw();Sleep(10);}Sleep(1000);
}
种植植物时记得扣除太阳值和重置冷却
/* 种植植物接口, 主要释放草格子内存, 二维指针数组对应位置,指向初始化的植物 */
Plant* growPlants(Plant* plant, int type, int x, int y)
{assert(plant);free((Grass*)plant); //释放该位置草格子内存if (type == PEA) //根据类型初始化 PeaShooter{PeaShooter* peaShooter = (PeaShooter*)calloc(1, sizeof(PeaShooter)); //calloc 函数替代 malloc, 省略 memsetassert(peaShooter);peaShooter->shootSpeed = DEFAULT_SHOOT_TIME; //豌豆射击速度, 或者叫豌豆发射子弹的时间间隔, -1 表示可发射子弹peaShooter->plant.blood = 100;//扣除太阳值和重置冷却sunShineVal -= 100;peaPlantInterval = 0;updatePlantCardStatus();return (Plant*)peaShooter;}else if (type == SUNFLOWER) //根据类型初始化 SunFlower{SunFlower* sunFlower = (SunFlower*)calloc(1, sizeof(SunFlower));assert(sunFlower);sunFlower->plant.type = 1;sunFlower->plant.blood = 100;sunFlower->timeInterval = MAX_TIME_INTERVAL * (4 + rand() % 5);/* 初始化贝塞尔曲线 */const int distance = (50 + rand() % 50); //只往右抛即可const int currPlantX = GRASS_LEFT_MARGIN + y * GRASS_GRID_WIDTH + 5;const int currPlantY = GRASS_TOP_MARGIN + x * GRASS_GRID_HIGHT + 10;sunFlower->t = 0;sunFlower->speed = 0.05;sunFlower->p1 = vector2(currPlantX, currPlantY);sunFlower->p2 = vector2(sunFlower->p1.x + distance * 0.3, sunFlower->p1.y - 100);sunFlower->p3 = vector2(sunFlower->p1.x + distance * 0.7, sunFlower->p1.y - 100);sunFlower->p4 = vector2(currPlantX + distance, currPlantY +imgPlant[SUNFLOWER][0]->getheight() - imgSunShineBall[0].getheight());sunShineVal -= 50; //扣除太阳值和重置冷却sumFlowerPlantInterval = 0;updatePlantCardStatus();return (Plant*)sunFlower;}
}
原 updatePlantsPic 接口中更新 peaPlantInterval 和 sumFlowerPlantInterval
/* 更新植物图片帧接口, 主要用于实现植物摇摆 */
void updatePlantsPic()
{++peaPlantInterval;++sumFlowerPlantInterval;updatePlantCardStatus();for (int i = 0; i < GRASS_GRID_ROW; ++i) //遍历二维指针数组{for (int j = 0; j < GRASS_GRID_COL; ++j){if (plants[i][j]->type >= PEA && //找到非草地的植物imgPlant[plants[i][j]->type][++plants[i][j]->frameId] == NULL) //将植物图片增加一, 判断是否到达图片帧末尾 plants[i][j]->frameId = 0; //重置图片帧为零}}
}
最后修改渲染卡片窗口的 updateWindow 函数
效果展示
如果阳光值不够选取植物,则渲染为灰色,阳光值不够不能种植该植物;且植物有冷却时间,在冷却时间内植物不能种植
③ 添加各种音乐
加上音效
初始背景音乐
/* 游戏开始前的菜单界面 */
void startUI()
{IMAGE imageBg, imgMenu1, imgMenu2;loadimage(&imageBg, "res/menu.png");loadimage(&imgMenu1, "res/menu1.png");loadimage(&imgMenu2, "res/menu2.png");PlaySound("res/audio/bg.wav", NULL, SND_FILENAME | SND_ASYNC); //异步播放音效bool mouseStatus = false; //0 表示鼠标未移动至开始游戏位置while (1) {BeginBatchDraw(); //双缓冲解决闪屏putimage(0, 0, &imageBg);putimagePNG(UI_LEFT_MARGIN, UI_TOP_MARGIN, mouseStatus ? &imgMenu2 : &imgMenu1); //根据鼠标是否移动至游戏开始位置, 显示不同的图片ExMessage msg;if (peekmessage(&msg)) //监听鼠标事件{if (msg.x > UI_LEFT_MARGIN && msg.x < UI_LEFT_MARGIN + UI_WIDTH&& msg.y > UI_TOP_MARGIN && msg.y < UI_TOP_MARGIN + UI_HIGHT) //当鼠标移动至开始游戏位置, 界面高亮{putimagePNG(UI_LEFT_MARGIN, UI_TOP_MARGIN, &imgMenu2);mouseStatus = true; //表示鼠标移动至开始游戏位置, 如果一直不移动鼠标则一直高亮if (msg.message == WM_LBUTTONDOWN) //当鼠标点击时, 进入游戏{PlaySound(0, 0, SND_FILENAME);EndBatchDraw();return; //结束函数}}else mouseStatus = false; //当鼠标未移动至开始游戏位置, 界面不高亮}EndBatchDraw();}
}
片头背景音乐
僵尸来了背景音乐
在 createZombie 接口中,添加如下代码
if (createZombies == 1) PlaySound("res/audio/zombiescoming.wav", NULL, SND_FILENAME | SND_ASYNC); //异步播放音效
选取植物背景音乐
种植物音乐,种到不合适地方的音乐
豌豆射击的音乐
花了两块大洋买了原曲,支持一下(其实是为了游戏背景曲,哈哈)
遗留问题
音频播放同时播放两个音频,可以实现功能就是没用到其它音频库,导致游戏试玩时当有大量音频需要加载播放时,会稍有卡顿,待有空找个 Win 音频三方库优化一下吧
全部源代码和资源文件待后续把项目上传