【深度学习基础之多尺度特征提取】多尺度图像增强(Multi-Scale Image Augmentation)是如何在深度学习网络中提取多尺度特征的?附代码

【深度学习基础之多尺度特征提取】多尺度图像增强(Multi-Scale Image Augmentation)是如何在深度学习网络中提取多尺度特征的?附代码

【深度学习基础之多尺度特征提取】多尺度图像增强(Multi-Scale Image Augmentation)是如何在深度学习网络中提取多尺度特征的?附代码


文章目录

  • 【深度学习基础之多尺度特征提取】多尺度图像增强(Multi-Scale Image Augmentation)是如何在深度学习网络中提取多尺度特征的?附代码
    • 前言
    • 1. 多尺度图像增强的原理
    • 2. 多尺度图像增强如何在深度学习中提取多尺度特征?
    • 3. 代码实现:多尺度图像增强
    • 4. 代码解析:
      • `RandomResizedCrop(224)`:
      • `RandomHorizontalFlip()`:
      • `RandomRotation(30)`:
      • `ColorJitter()`:
      • `ToTensor()`:
    • 5. 多尺度增强的效果
    • 6. 总结:


欢迎宝子们点赞、关注、收藏!欢迎宝子们批评指正!
祝所有的硕博生都能遇到好的导师!好的审稿人!好的同门!顺利毕业!

大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文:
可访问艾思科蓝官网,浏览即将召开的学术会议列表。会议详细信息可参考:https://ais.cn/u/mmmiUz

前言

多尺度图像增强(Multi-Scale Image Augmentation) 是一种数据增强技术,旨在通过对图像进行不同尺度的变换(如缩放、裁剪、旋转等)来增加训练数据的多样性,从而帮助模型更好地学习图像的多尺度特征

这种方法能够模拟不同尺寸的物体和图像变化,有助于提高模型的泛化能力和鲁棒性,特别是在目标检测、图像分类和语义分割等任务中。

1. 多尺度图像增强的原理

多尺度图像增强的核心思想是通过对输入图像进行不同尺度的变换(如缩放、裁剪、旋转等),生成多样化的训练样本

这可以帮助网络学习到图像在不同尺度下的特征,并使模型更加鲁棒,能够处理图像中尺度变化较大的对象。

常见的多尺度增强方法包括:

  • 缩放:通过随机缩放图像,模拟不同大小的目标。
  • 裁剪:在不同尺度下对图像进行裁剪,模拟物体的不同部分。
  • 旋转:旋转图像,帮助模型学习在不同角度下的物体特征。
  • 平移和镜像:平移和镜像操作也能帮助网络在不同场景下学习到更加鲁棒的特征。

2. 多尺度图像增强如何在深度学习中提取多尺度特征?

多尺度图像增强能够:

  • 模拟不同物体尺度:通过缩放图像,生成不同尺寸的物体,增强模型对不同尺度物体的识别能力。
  • 改善鲁棒性:通过对图像进行随机变换,增强模型对图像变形(如旋转、翻转、缩放等)的鲁棒性。
  • 提高泛化能力:通过增强多样性,减少过拟合,提高模型在不同数据集上的表现。

3. 代码实现:多尺度图像增强

以下是使用 PyTorch 和 Torchvision 实现的多尺度图像增强操作示例。我们将使用 torchvision.transforms 对图像进行缩放、裁剪、旋转等变换,以模拟多尺度的图像增强。

import torch
from torchvision import transforms
from PIL import Image
import matplotlib.pyplot as plt# 加载一张示例图像
img = Image.open("example_image.jpg")# 定义多尺度增强的变换
transform = transforms.Compose([transforms.RandomResizedCrop(224),  # 随机裁剪,并缩放到224x224transforms.RandomHorizontalFlip(),  # 随机水平翻转transforms.RandomRotation(30),      # 随机旋转角度(最大30度)transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.2),  # 随机色彩调整transforms.ToTensor(),  # 转换为Tensor
])# 应用变换
transformed_img = transform(img)# 将结果展示出来
plt.imshow(transformed_img.permute(1, 2, 0))
plt.axis('off')  # 不显示坐标轴
plt.show()

4. 代码解析:

RandomResizedCrop(224):

  • 随机裁剪图像,并将裁剪后的图像缩放到 224x224。该操作帮助模型在不同尺度上看到图像的不同部分,能够有效模拟不同大小的物体。

RandomHorizontalFlip():

  • 随机水平翻转图像。这可以增强模型在水平方向上的泛化能力。

RandomRotation(30):

  • 随机旋转图像,旋转角度在 -30 到 30 度之间。这可以帮助模型学习到图像在不同角度下的特征。

ColorJitter():

  • 随机调整图像的亮度、对比度、饱和度和色调。该操作使得图像的颜色和光照条件发生变化,增强模型对不同环境光照下的鲁棒性。

ToTensor():

  • 将图像转换为 PyTorch Tensor,方便后续在深度学习模型中使用。

5. 多尺度增强的效果

  • 不同尺度的目标:通过 RandomResizedCrop,图像中的物体会被随机缩放到不同尺寸,有助于网络学习不同尺度的物体特征。
  • 不同视角:通过随机旋转,网络能在不同视角下看到物体,增强对角度变化的适应性。
  • 不同场景变化:通过色彩调整,模拟不同光照和色彩条件下的场景变化,提高模型的鲁棒性。

6. 总结:

  • 多尺度图像增强 是一种通过对图像进行不同尺度的变换(如缩放、裁剪、旋转、色彩变化等)来增强数据集的技术。通过这种方式,可以帮助模型更好地学习不同尺度、不同角度下的图像特征,从而提高模型的泛化能力。
  • 通过这种增强方式,深度学习模型能够更好地适应现实世界中的复杂图像变换,如物体大小、视角、光照等变化。

欢迎宝子们点赞、关注、收藏!欢迎宝子们批评指正!
祝所有的硕博生都能遇到好的导师!好的审稿人!好的同门!顺利毕业!

大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文:
可访问艾思科蓝官网,浏览即将召开的学术会议列表。会议详细信息可参考:https://ais.cn/u/mmmiUz

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/500457.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

快速掌握Elasticsearch检索之二:滚动查询(scrool)获取全量数据(golang)

Elasticsearch8.17.0在mac上的安装 Kibana8.17.0在mac上的安装 Elasticsearch检索方案之一:使用fromsize实现分页 1、滚动查询的使用场景 滚动查询区别于上一篇文章介绍的使用from、size分页检索,最大的特点是,它能够检索超过10000条外的…

【分布式文件存储系统Minio】2024.12保姆级教程

文章目录 1.介绍1.分布式文件系统2.基本概念 2.环境搭建1.访问网址2.账号密码都是minioadmin3.创建一个桶4.**Docker安装miniomc突破7天限制**1.拉取镜像2.运行容器3.进行配置1.格式2.具体配置 4.查看桶5.给桶开放权限 3.搭建minio模块1.创建一个oss模块1.在sun-common下创建2.…

2021.12.28基于UDP同信的相关流程

作业 1、将TCP的CS模型再敲一遍 服务器 #include <myhead.h> #define PORT 8888 #define IP "192.168.124.123" int main(int argc, const char *argv[]) {//创建套接字//绑定本机IP和端口号//监听客户端请求//接收客户端连接请求//收发消息//创建套接字int…

StarRocks 存算分离在得物的降本增效实践

编者荐语&#xff1a; 得物优化数据引擎布局&#xff0c;近期将 4000 核 ClickHouse 迁移至自建 StarRocks&#xff0c;成本降低 40%&#xff0c;查询耗时减半&#xff0c;集群稳定性显著提升。本文详解迁移实践与成果&#xff0c;文末附丁凯剑老师 StarRocks Summit Asia 2024…

vue视频录制 限制大小,限制时长

<template><div style"height: 100vh;background: #000;"><span style"color: #fff;font-size: 18px;">切换数量&#xff1a;{{ devices.length }}</span><video ref"video" autoplay muted playsinline></vid…

若依框架之简历pdf文档预览功能

一、前端 &#xff08;1&#xff09;安装插件vue-pdf&#xff1a;npm install vue-pdf &#xff08;2&#xff09;引入方式&#xff1a;import pdf from "vue-pdf"; &#xff08;3&#xff09;components注入方式&#xff1a;components:{pdf} &#xff08;4&…

永磁同步电机负载估计算法--自适应龙伯格观测器

一、原理介绍 龙贝格扰动观测器的参数可以通过带宽配置法进行整定&#xff0c;将观测器带宽设为L&#xff0c;选取大的L可以加快观测器的收敛速度&#xff0c;但是L过大会导致系统阶跃响应出现超调、稳态性能差等问题。因此&#xff0c;在龙贝格观测器中引入表征系统状态变量x…

Python机器学习笔记(十七、分箱、离散化、线性模型与树)

数据表示的最佳方法&#xff1a;取决于数据的语义&#xff0c;所使用的模型种类。 线性模型与基于树的模型&#xff08;决策树、梯度提升树和随机森林&#xff09;是两种成员很多同时又非常常用的模 型&#xff0c;它们在处理不同的特征表示时就具有非常不同的性质。我们使用w…

Spring Boot介绍、入门案例、环境准备、POM文件解读

文章目录 1.Spring Boot(脚手架)2.微服务3.环境准备3.1创建SpringBoot项目3.2导入SpringBoot相关依赖3.3编写一个主程序&#xff1b;启动Spring Boot应用3.4编写相关的Controller、Service3.5运行主程序测试3.6简化部署 4.Hello World探究4.1POM文件4.1.1父项目4.1.2父项目的父…

嵌入式入门Day35

网络编程 Day2 套接字socket基于TCP通信的流程服务器端客户端TCP通信API 基于UDP通信的流程服务器端客户端 作业 套接字socket socket套接字本质是一个特殊的文件&#xff0c;在原始的Linux中&#xff0c;它和管道&#xff0c;消息队列&#xff0c;共享内存&#xff0c;信号等…

安卓系统主板_迷你安卓主板定制开发_联发科MTK安卓主板方案

安卓主板搭载联发科MT8766处理器&#xff0c;采用了四核Cortex-A53架构&#xff0c;高效能和低功耗设计。其在4G网络待机时的电流消耗仅为10-15mA/h&#xff0c;支持高达2.0GHz的主频。主板内置IMG GE832 GPU&#xff0c;运行Android 9.0系统&#xff0c;内存配置选项丰富&…

centos,789使用mamba快速安装R及语言包devtools

如何进入R语言运行环境请参考&#xff1a;Centos7_miniconda_devtools安装_R语言入门之R包的安装_r语言devtools包怎么安装-CSDN博客 在R里面使用安装devtools经常遇到依赖问题&#xff0c;排除过程过于费时&#xff0c;使用conda安装包等待时间长等。下面演示centos,789都是一…

人工智能(AI)简史:推动新时代的科技力量

一、人工智能简介 人工智能&#xff08;AI&#xff0c;Artificial Intelligence&#xff09;是计算机科学的一个分支&#xff0c;旨在研究和开发可以模拟、扩展或增强人类智能的系统。它涉及多种技术和方法&#xff0c;包括机器学习、深度学习、自然语言处理&#xff08;NLP&a…

【笔记】在虚拟机中通过apache2给一个主机上配置多个web服务器

&#xff08;配置出来的web服务器又叫虚拟主机……&#xff09; 下载apache2 sudo apt update sudo apt install apache2 &#xff08;一&#xff09;ip相同 web端口不同的web服务器 进入 /var/www/html 创建站点一和站点二的目录文件&#xff08;目录文件名自定义哈&#x…

linux装git

前言 以 deepin 深度系统为例&#xff0c;安装命 令行版 Git 非常简单。 安装 注意&#xff1a;需要输入账号密码&#xff0c;否则无法进行。 打开终端&#xff0c;执行如下命令即可。 sudo apt-get install git成功 如下图所示&#xff0c;输入 git &#xff0c;命令识别即…

【Spark】架构与核心组件:大数据时代的必备技能(下)

&#x1f407;明明跟你说过&#xff1a;个人主页 &#x1f3c5;个人专栏&#xff1a;《大数据前沿&#xff1a;技术与应用并进》&#x1f3c5; &#x1f516;行路有良友&#xff0c;便是天堂&#x1f516; 目录 一、引言 1、什么是Apache Spark 2、Spark 的应用场景&…

NLP中的神经网络基础

一&#xff1a;多层感知器模型 1&#xff1a;感知器 解释一下&#xff0c;为什么写成 wxb>0 &#xff0c;其实原本是 wx > t ,t就是阈值&#xff0c;超过这个阈值fx就为1&#xff0c;现在把t放在左边。 在感知器里面涉及到两个问题&#xff1a; 第一个&#xff0c;特征提…

第十一章 图论

题目描述&#xff1a; 阿里这学期修了计算机组织和架构课程。他了解到指令之间可能存在依赖关系&#xff0c;比如WAR&#xff08;读后写&#xff09;、WAW、RAW。 如果两个指令之间的距离小于安全距离&#xff0c;则会导致危险&#xff0c;从而可能导致错误的结果。因此&#…

嵌入式系统 第七讲 ARM-Linux内核

• 7.1 ARM-Linux内核简介 • 内核&#xff1a;是一个操作系统的核心。是基于硬件的第一层软件扩充&#xff0c; 提供操作系统的最基本的功能&#xff0c;是操作系统工作的基础&#xff0c;它负责管理系统的进程、内存、设备驱动程序、文件和网络系统&#xff0c; 决定着系统的…

win11蓝屏死机 TPM-WMI

1. 打开win11的事件查看器&#xff0c;定位错误 最近两次都是 KB5016061&#xff1a;安全启动数据库和 DBX 变量更新事件 - Microsoft 支持 事件源 TPM-WMI 事件 ID 1796 2. 解决方案 打开注册表&#xff1a;计算机\HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Contro…