有 NN 种物品和一个容量是 VV 的背包。
第 ii 种物品最多有 sisi 件,每件体积是 vivi,价值是 wiwi。
求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。
输出最大价值。
输入格式
第一行两个整数,N,VN,V,用空格隔开,分别表示物品种数和背包容积。
接下来有 NN 行,每行三个整数 vi,wi,sivi,wi,si,用空格隔开,分别表示第 ii 种物品的体积、价值和数量。
输出格式
输出一个整数,表示最大价值。
数据范围
0<N,V≤1000<N,V≤100
0<vi,wi,si≤1000<vi,wi,si≤100
输入样例
4 5
1 2 3
2 4 1
3 4 3
4 5 2
输出样例:
10
代码:
#include <iostream>
#include <algorithm>using namespace std;const int N = 110;
int n,m;
int v[N],w[N],s[N];
int f[N][N];int main()
{cin>>n>>m;for(int i=1;i<=n;i++)cin>>v[i]>>w[i]>>s[i];for(int i=1;i<=n;i++){for(int j=0;j<=m;j++){for(int k=0;k<=s[i] && k * v[i] <= j;k++){f[i][j] = max(f[i][j],f[i-1][j-v[i]*k]+w[i]*k);}}}cout<<f[n][m]<<endl;return 0;
}