日志聚类算法 Drain 的实践与改良

在现实场景中,业务程序输出的日志往往规模庞大并且类型纷繁复杂。我们在查询和查看这些日志时,平铺的日志列表会让我们目不暇接,难以快速聚焦找到重要的日志条目。

在观测云中,我们在日志页面提供了聚类分析功能,可以快速聚合相似的日志文本,帮助你全览不同类型的日志。这个功能背后就由基于 Drain 的改良算法驱动。

快速理解 Drain 算法

根据 logparser 项目提供的 Benchmark 数据和论文原文可知,Drain 在一众日志聚类算法中准确度和性能都几乎是最好的,所以我们选择基于 Drain 算法来实现产品功能。

在这里我们尝试根据 Drain 论文来总结和梳理一下算法的主要逻辑:

1、首先对日志进行业务预处理,将一些常见的日志模式替换为占位符,比如时间、用户 ID、IP 等

2、对预处理的数据进行分词,并在 Drain 的搜索树的第一层找到对应单词数量的子节点

3、再逐个根据日志中的单词序列,在下层的前缀搜索树上找到对应的日志聚类桶

4、遍历对应前缀树指向的日志聚类桶,分别判断当前日志跟对应日志类的相似度是否达到阈值

  • 相似度算法:两条日志从左往右,一个一个单词看相不相同,统计相同单词的数量,除以日志长度就得到相似度

5、如果相似则将当前的日志加入该类别,不相似则创建新的类别并加入到前缀树中

我们回顾一下上述的处理流程:

1、占位预处理的目标是为了将日志中最常见的变量替换为相同的占位符,来提升相同单词的比例,以提升最终文本的相似度

2、Drain 第一层的按照单词数区分的子树和后续根据前缀树拆分的子树目标都是缩小相似度计算的开销,我们只用跟最可能相似的日志组来对比计算

相信到这里,你已经基本理解了 Drain 算法的基本设计思路。这个算法思路总体并不复杂,固定深度的查找树、简单的相似度匹配算法都让算法的运行非常高效。

改良 1:占位处理后置,并提升处理效率

我们在最初的使用中按照论文的描述给日志增加了一些常见的日志模式占位符,比如:

  • 时间: [0-9]{1,}:[0-9]{1,}:[0-9]{1,}.?[0-9]{1,}?
  • IPv4: \\d{1,3}\\.\\d{1,3}\\.\\d{1,3}\\.\\d{1,3}
  • Hex: 0x[a-f0-9A-F]+
  • 数字: -?[0-9]{1,}.?[0-9]*
  • ID: [0-9a-f]{4,}

众所周知,时间在日志中输出的格式是可能有非常多种类型的,我这里只添加了最简单的一种,还有 IPv6 因为正则表达式的规则过于复杂也还没加。

在初步添加上述少量的占位符匹配之后,我们就发现 Drain 算法的匹配效率显著下降。

在我们内部一个 1w 行的测试数据集上,完成训练的时间由 80ms 增长到 2.2s,匹配效率降低约 30 倍,通过 CPU Profiler 调用树可以观察到性能的主要开销都在正则表达式的替换上。

那么不进行占位处理可以吗?不可以,这些变量会严重影响日志相似度的判定。

那么可以换更高效的正则表达式库吗?我们尝试了一些常见的优化方案,但提升的幅度没有这么显著。

我们使用多个正则表达式对全部日志的每个单词都进行了一遍正则的匹配,这个的开销自然是不低的。那这个完整的匹配是必须的吗?哪些路径的正则匹配是必须的?

前面我们已经强调过,我们期望的通过占位处理之后不影响日志相似度的判断。那么我们其实只需要在日志相似度运算的时候对必要的单词来做这个正则匹配就好了。

假设当前日志组的模板变量是:Just A Log Template <Number> ,现在我们有一个日志 Just A Log Template 123 需要跟这个模板对比相似度,我们在逐个单词进行对比相似度时,只需要判断日志的最后一个单词是否匹配中 <Number> 占位符对应的正则表达式,我们不用判断这个单词是否能匹配中其他的占位符,也不用关注其他的单词是什么情况,更不必要提前对这个日志进行完整占位处理。

Drain 本身通过多层的分桶降低了我们日志需要判断的聚类组的数量,另外我们根据日志组的模板变量确定了需要进行哪种占位符的判断,所以实际的匹配开销经过这两重剪枝就大大降低了。在刚才提到的数据集下,我们把占位符的匹配后置,完成训练的时间就降低到只有 120ms 左右了。

改良 2:提升占位处理通用性

在通过剪枝解决了匹配效率问题之后我们还关注到当前的占位处理的逻辑其实不太通用,IPv4、IPv6、超多种时间格式、用户自行输出的结构体、JSON 文本等等其实结构非常复杂,根据不同的使用习惯不同也难以罗列完整,维护也比较复杂。

我们最终的方案是尝试将常见的符号比如 :.," 等前后添加空格,在分词时就可以把这些符号拆分成单独的单词,这样比如一个 IPv4 的地址会被拆分为 <Number>:<Number>:<Number>:<Number> ,一个 IPv6 地址会被拆分为 <ID> 和 : 子元素,时间格式会被拆分为数个 <Number> 和 : 。

按这种逻辑,我们最终只维护了三个基本的占位元素,分别是:

  • 数字: [-+]?[0-9]+
  • Hex: 0x[a-f0-9A-F]+
  • ID: [a-f0-9A-F]{4,}

这样除了维护更简单,常见的占位格式都不用维护,而且对 JSON 文本的支持也更友好了,可以将其中的 KV 都完全拆分。

改良 3:支持变长日志聚类

回忆一下 Drain 的处理流程,我们在知道日志长度的时候就直接划分子树了。那么显而易见的,Drain 对变长的日志支持效果都不会太好。

举个实际点的例子,两个包含 UA 的请求日志:

1、[28/Aug/2022:07:01:36 +0800] "GET / HTTP/1.1" 200 "Mozilla/5.0 (Linux; Android 12; PEEM00 Build/RKQ1.211119.001; wv) AppleWebKit/537.36 (KHTML, like Gecko) Version/4.0 Chrome/97.0.4692.98 Mobile Safari/537.36"

2、[28/Aug/2022:07:50:18 +0800] "GET / HTTP/1.1" 200 "Mozilla/5.0 (Linux; Android 9; MI 8 Build/PQ3A.190801.002; wv) AppleWebKit/537.36 (KHTML, like Gecko) Version/4.0 Chrome/87.0.4280.101 Mobile Safari/537.36"

这两条日志的长度是不一样的,一个的手机型号是 PEEM00 一个的手机型号是 MI 8 。所以虽然两个日志非常相像,但还是不会被聚合到同一个类别中。

这合理吗?显然是不合理的。

所以我们给 Drain 额外增加了一个相邻长度聚类组的相似度判断逻辑。同时要注意到,之前我们的相似度判断算法是逐个单词匹配的,当这里单词数不一样的时候,中间可能会错位,导致相似度计算可能会很严重偏低,我们原有的算法已经不太适用这种情况了。

常见的文本相似度算法都不限定两个文本单词长度必须相等,比如计算欧几里得距离、曼哈顿距离、明可夫斯基距离、余弦相似度等。这里我们最终选用了 minhash 算法,我们可以提前对每个日志组计算好特征向量,在判断匹配时给日志行计算雅卡尔距离时可以更高效。

同时要注意的是,如果你的数据集是请求日志这样的数据,单词的长度可能都差不多,并且不同的日志组本身的相似度其实已经很高了。这样的数据集下,你不能只优先匹配相邻长度的日志组,应该优先把前后一定长度范围的全部日志组放在一个大池子里来找到最优解。

总结

经过我们对 Drain 的深入剖析和改良,新算法的流程是这样的:

1、直接对日志文本进行分词,并在 Drain 的搜索树的第一层找到对应单词数量的子节点

2、再逐个根据日志中的单词序列,在下层的前缀搜索树上找到对应的日志聚类桶

3、遍历对应前缀树指向的日志聚类桶,分别判断当前日志跟对应日志类的相似度是否达到阈值

  • 相似度算法:两条日志从左往右依次对比,如果类别模板中对应位置是占位符,则使用占位符对应的正则表达式匹配原始文本,跟原有算法一样计算相似度

4、如果相似则将当前的日志加入该类别,不相似则拿出来前后一定范围长度的全部日志类别,对比这些日志于当前的日志的 minhash 的笛卡尔距离,判断相似度是否达到阈值

5、如果前面两种相似度判断都失败,则创建新的日志分类,此时注意需要对现有的日志进行完整的占位符替换,最后将创建的新的日志类别加入前缀搜索树中

经过如上的处理流程,该算法对于定长、变长、JSON 等格式的日志聚合表现相比于原版 Drain 都更加优异,同时也能保持极高的匹配效率。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/501591.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

RabbitMQ基础篇之Java客户端快速入门

文章目录 需求 项目设置与依赖管理 配置RabbitMQ的连接信息创建队列与消息发送创建消费者&#xff08;消息接收&#xff09;环境准备与操作 需求 利用控制台创建队列 simple.queue在 publisher 服务中&#xff0c;利用 SpringAMQP 直接向 simple.queue 发送消息在 consumer 服…

在虚幻引擎4(UE4)中使用蓝图的详细教程

在虚幻引擎4&#xff08;UE4&#xff09;中使用蓝图的详细教程 虚幻引擎4&#xff08;Unreal Engine 4&#xff0c;简称UE4&#xff09;是一款功能强大的游戏引擎&#xff0c;广泛应用于游戏开发、虚拟现实、建筑可视化等领域。UE4 提供了一个强大的可视化脚本工具——蓝图&am…

初学STM32 ---高级定时器互补输出带死区控制

互补输出&#xff0c;还带死区控制&#xff0c;什么意思&#xff1f; 带死区控制的互补输出应用之H桥 捕获/比较通道的输出部分&#xff08;通道1至3&#xff09; 死区时间计算 举个栗子&#xff08;F1为例&#xff09;&#xff1a;DTG[7:0]250&#xff0c;250即二进制&#x…

MarkDown怎么转pdf;Mark Text怎么使用;

MarkDown怎么转pdf 目录 MarkDown怎么转pdf先用CSDN进行编辑,能双向看版式;标题最后直接导出pdfMark Text怎么使用一、界面介绍二、基本操作三、视图模式四、其他功能先用CSDN进行编辑,能双向看版式; 标题最后直接导出pdf Mark Text怎么使用 Mark Text是一款简洁的开源Mar…

华为ensp-BGP路由过滤

学习新思想&#xff0c;争做新青年&#xff0c;今天学习的是BGP路由过滤 实验目的&#xff1a; 掌握利用BGP路由属性AS_Path进行路由过滤的方法 掌握利用BGP路由属性Community进行路由过滤的方法 掌握利用BGP路由属性Next_Hop进行路由过滤的方法 实验内容&#xff1a; 本实…

HackMyVM-Airbind靶机的测试报告

目录 一、测试环境 1、系统环境 2、使用工具/软件 二、测试目的 三、操作过程 1、信息搜集 2、Getshell 3、提权 使用ipv6绕过iptables 四、结论 一、测试环境 1、系统环境 渗透机&#xff1a;kali2021.1(192.168.101.127) 靶 机&#xff1a;debian(192.168.101.11…

springcloud篇3-docker需熟练掌握的知识点

docker的原理请参考博文《Docker与Kubernetes》。 一、安装docker的指令 1.1 安装yum工具 yum install -y yum-utils \device-mapper-persistent-data \lvm2 --skip-broken补充&#xff1a;配置镜像源 注意&#xff1a; yum安装是在线联网下载安装&#xff0c;而很多的资源…

ES IK分词器插件

前言 ES中默认了许多分词器&#xff0c;但是对中文的支持并不友好,IK分词器是一个专门为中文文本设计的分词工具&#xff0c;它不是ES的内置组件&#xff0c;而是一个需要单独安装和配置的插件。 Ik分词器的下载安装&#xff08;Winows 版本&#xff09; 下载地址&#xff1a;…

BP神经网络的反向传播算法

BP神经网络&#xff08;Backpropagation Neural Network&#xff09;是一种常用的多层前馈神经网络&#xff0c;通过反向传播算法进行训练。反向传播算法的核心思想是通过计算损失函数对每个权重的偏导数&#xff0c;从而调整权重&#xff0c;使得网络的预测输出与真实输出之间…

在Linux下安装部署Tomcat教程

摘要 Tomcat是由Apache开发的要给Servlet容器,实现了对Servlet 和JSP的支持,并提供了作为Web服务器的一些特有功能,如Tomcat管理和控制平台,安全管理和Tomcat阀等。简单来说,Tomcat是一个由WEB应用程序的托管平台,可以让用户编写的WEB应用程序,别Tomcat所托管,并提供网…

vue学习第一阶段

vue 什么是Vue? 概念:Vue是一个构建用户页面的渐进式框架 Vue的两种使用方式 Vue的核心开发 场景: 局部 {\color{red}局部} 局部模块改造Vue核心包& Vue插件 工程化开发场景: 整站 {\color{red}整站} 整站开发Vue2官网 https://v2.cn.vuejs.org/ 资料存放地址 D:\Baidu…

RabbitMQ-基本使用

RabbitMQ: One broker to queue them all | RabbitMQ 官方 安装到Docker中 docker run \-e RABBITMQ_DEFAULT_USERrabbit \-e RABBITMQ_DEFAULT_PASSrabbit \-v mq-plugins:/plugins \--name mq \--hostname mq \-p 15672:15672 \-p 5672:5672 \--network mynet\-d \rabbitmq:3…

云效流水线使用Node构建部署前端web项目

云效流水线实现自动化部署 背景新建流水线配置流水线运行流水线总结 背景 先来看看没有配置云效流水线之前的部署流程&#xff1a; 而且宝塔会经常要求重新登录&#xff0c;麻烦的很 网上博客分享了不少的配置流程&#xff0c;这一篇博客的亮点就是不仅给出了npm命令构建&…

Web安全 - “Referrer Policy“ Security 头值不安全

文章目录 概述原因分析风险说明Referrer-Policy 头配置选项1. 不安全的策略no-referrer-when-downgradeunsafe-url 2. 安全的策略no-referreroriginorigin-when-cross-originsame-originstrict-originstrict-origin-when-cross-origin 推荐配置Nginx 配置示例 在 Nginx 中配置 …

ROS导航使用贝塞尔曲线对全局路径进行平滑处理

文章目录 前言一、贝塞尔曲线的使用二、全局路经修改三、结果对比 前言 ROS原生的全局路径规划GlobalPlanner包含A*和Dijkstra&#xff0c;两者原理基本相同&#xff0c;能够规划出从起点到终点的路径&#xff0c;但是由于栅格地图存在锯齿形&#xff0c;得到的全局路径也会出…

解决uniapp H5页面限制输入框只能输数字问题

工作记录 最最近在做 uniapp 开发的移动端 H5 页面&#xff0c;有个需求是金额输入框只能输入数字&#xff0c;不能输入小数点和其他字符&#xff0c;经过各种尝试&#xff0c;发现其他字符可以通过正则过滤掉&#xff0c;但是输入小数点的话&#xff0c;因为没有触发 input 和…

DC-2 靶场渗透

目录 环境搭建 开始渗透 扫存活 扫端口 扫服务 看一下80端口 看一下指纹信息 使用wpscan扫描用户名 再使用cewl生成字典 使用wpscan爆破密码 登陆 使用7744端口 查看shell rbash绕过 切换到jerry用户 添加环境变量 现在可以使用su命令了 提权 使用git提权 环…

如何逐步操作vCenter修改DNS服务器?

在vSphere 7中有一个新功能&#xff0c;它允许管理员更改vCenter Server Appliance的FQDN和IP。因此本文将介绍如何轻松让vCenter修改DNS服务器。 vCenter修改DNS以及修改vCenter IP地址 与在部署 vCenter Server Appliance 后&#xff0c;您可以根据需要修改其 DNS 设置和 IP…

Qt qtcreator配置cmake

添加CMake 选择 Preferences > CMake > Tools. 可以将其设置为默认&#xff0c;如此新建的kit会自动选择默认cmake 完成CMake 代码&#xff08;自动补全&#xff09; Qt Creator 使用通用高亮为 CMake 命令提供代码完成的特定参数。例如&#xff0c;CMake: set_source_…

JeeSite 快速开发平台:全能企业级快速开发解决方案|GitCode 光引计划征文展示

投稿人GitCode ID&#xff1a;thinkgem 光引计划投稿项目介绍 JeeSite 快速开发平台&#xff0c;不仅仅是一个后台开发框架&#xff0c;它是一个企业级快速开发解决方案&#xff0c;后端基于经典组合 Spring Boot、Shiro、MyBatis&#xff0c;前端采用 Beetl、Bootstrap、Admi…