9.系统学习-卷积神经网络

9.系统学习-卷积神经网络

  • 简介
  • 输入层
  • 卷积层
  • 感受野
  • 池化层
  • 全连接层
  • 代码实现

简介

卷积神经网络是一种用来处理局部和整体相关性的计算网络结构,被应用在图像识别、自然语言处理甚至是语音识别领域,因为图像数据具有显著的局部与整体关系,其在图像识别领域的应用获得了巨大的成功。卷积神经网络中,一般包含5种类型的网络层:
在这里插入图片描述

输入层

输入层(Input Layer)通常是输入卷积神经网络的原始数据或经过预处理的数据,可以是图像识别领域中原始三维的多彩图像,也可以是音频识别领域中经过傅里叶变换的二维波形数据,甚至是自然语言处理任务中一维表示的句子向量。

以图像分类任务为例,输入层输入的图像一般包含 RGB 三个通道,是一个由长宽分别为 H H H W W W 组成的 3 维像素值矩阵 H × W × C H \times W \times C H×W×C,卷积网络会将输入层的数据传递到一系列卷积、池化等操作中进行特征提取和转化,最终由全连接层对特征进行汇总和结果输出。

根据计算能力、存储大小和模型结构的不同,卷积神经网络每次可以批量处理的图像个数不尽相同,若指定输入层接收到的图像个数为 N N N,则输入层的输出数据为:
N × C × H × W N \times C \times H \times W N×C×H×W

其中:

  • N N N 是批量大小(Batch Size)。
  • C C C 是通道数,例如 RGB 图像有 C = 3 C=3 C=3 个通道。
  • H H H W W W 分别是图像的高度和宽度。

卷积层

卷积层(Convolution Layer)通常用作对输入层输入数据进行特征提取,通过卷积核矩阵对原始数据中隐含关联性的一种抽象。卷积操作原理上其实是对两张像素矩阵进行点乘求和的数学操作,其中一个矩阵为输入的数据矩阵,另一个矩阵则为卷积核(滤波器或特征矩阵),求得的结果表示为原始图像中提取的特定局部特征。对应过程如下图所示:
在这里插入图片描述
卷积层中需要用到卷积核(滤波器或特征检测器)与图像特征矩阵进行点乘运算,利用卷积核与对应的特征感受域进行划窗式运算时,需要设定卷积核对应的大小、步长、个数以及填充的方式,
在这里插入图片描述
对应参数解释如表所示
在这里插入图片描述
卷积层有两个重要特性:局部连接权值共享

局部连接是指卷积层的节点仅仅和其前一层的部分节点相连接,只用来学习局部特征。局部感知结构的构思理念来源于动物视觉的皮层结构,其指的是动物视觉的神经元在感知外界物体的过程中起作用的只有一部分神经元。

在计算机视觉中,图像中的某一块区域中,像素之间的相关性与像素之间的距离同样相关,距离较近的像素间相关性强,距离较远则相关性就比较弱。由此可见,局部相关性理论也适用于计算机视觉的图像处理领域。因此,局部感知采用部分神经元接受图像信息,再通过综合全部的图像信息达到增强图像信息的目的。

权值共享是指计算同一深度的神经元时采用的卷积核参数是共享的。权值共享在一定程度上讲是有意义的,是由于在神经网络中,提取的底层边缘特征与其在图中的位置无关。但在某些场景中是无意的,例如在人脸识别任务中,我们期望在不同的位置学到不同的特征。

需要注意的是,权重只是对于同一深度切片的神经元是共享的。在卷积层中,通常采用多组卷积核提取不同的特征,即对应的是不同深度切片的特征,而不同深度切片的神经元权重是不共享的。相反,偏置这一权值对于同一深度切片的所有神经元都是共享的。

权值共享带来的好处是大大降低了网络的训练难度。假设在局部连接中隐藏层的每一个神经元连接的是一个 10 × 10 10 \times 10 10×10 的局部图像,因此有 10 × 10 10 \times 10 10×10 个权值参数。将这 10 × 10 10 \times 10 10×10 个权值共享给剩下的神经元,也就是说隐藏层中一个神经元的权值参数相同,那么此时无论隐藏层神经元的数量是多少,需要训练的参数就是这 10 × 10 10 \times 10 10×10 个权值参数(也就是卷积核的大小)。

感受野

在CONV层每个输出节点的值仅依赖CONV层输入的一个区域,这个区域之外的其他输入值都不会影响输出值,该区域就是感受野。
在这里插入图片描述
图中是个微型CNN,来自Inception‑v3论文,原图是为了说明一个conv5x5可以用两个conv3x3代替,从下到上称为第1 , 2 , 3层:

  • 第 2 层左下角的值:是第 1 层左下红框中 3 × 3 3 \times 3 3×3 区域的值经过卷积,也就是乘加运算计算出来的。即第 2 层左下角位置的感受野是第 1 层左下红框区域。

  • 第 3 层唯一值:是第 2 层所有 3 × 3 3 \times 3 3×3 区域卷积得到的,即第 3 层唯一位置的感受野是第 2 层所有 3 × 3 3 \times 3 3×3 区域。

  • 第 3 层唯一值:是第 1 层所有 5 × 5 5 \times 5 5×5 区域经过两层卷积得到的,即第 3 层唯一位置的感受野是第 1 层所有 5 × 5 5 \times 5 5×5 区域。


感受野计算时需要注意以下几点:

  • 最后一层(卷积层或池化层)输出特征图感受野的大小等于卷积核的大小。

  • i i i 层卷积层的感受野大小和第 ( i + 1 ) (i+1) (i+1) 层的卷积核大小和步长有关,同时也与第 ( i + 1 ) (i+1) (i+1) 层感受野大小有关。

  • 计算感受野大小时忽略了图像边缘的影响,即不考虑 padding 的大小。

如果感受野大小使用的计算方式是采用从最后一层往下计算的方法,即先计算最深层在前一层上的感受野,然后逐层传递到第一层,使用的公式可以表示如下:

R F i = ( R F i + 1 − 1 ) × s t r i d e i + K s i z e i RF_i = (RF_{i+1} - 1) \times stride_i + Ksize_i RFi=(RFi+11)×stridei+Ksizei

其中, R F i RF_i RFi 是第 i i i 层卷积层的感受野, R F i + 1 RF_{i+1} RFi+1 是第 ( i + 1 ) (i+1) (i+1) 层上的感受野, s t r i d e stride stride 是卷积的步长, K s i z e Ksize Ksize 是本层卷积核大小。

如上图感受野的计算过程为:

R F 2 = 3 RF_2 = 3 RF2=3

R F 1 = ( 3 − 1 ) × 1 + 3 = 5 RF_1 = (3 - 1) \times 1 + 3 = 5 RF1=(31)×1+3=5

池化层

池化层又称为降采样层(Downsampling Layer),作用是对感受域内的特征进行筛选,提取区域内最具代表性的特征,能够有效地降低输出特征的尺寸,进而减少模型所需要的参数量。按操作类型通常分为最大池化(Max Pooling)、平均池化(Average Pooling)和求和池化(Sum Pooling),它们分别提取感受域内最大、平均与总和的特征值作为输出。最常用的是最大池化。
在这里插入图片描述

全连接层

全连接层( Full Connected Layer )负责对卷积神经网络学习提取到的特征进行汇总,将多维的特征输入映射为二维的特征输出,高维表示样本批次,低位常常对应任务目标.

代码实现

import torch 
from torch import nn 
%matplotlib inline 
class CNN(nn.Module):def __init__(self):super(CNN, self).__init__()self.conv1 = nn.Sequential(         # input shape (1, 28, 28)nn.Conv2d(in_channels=1,              # input heightout_channels=16,            # n_filterskernel_size=5,              # filter sizestride=1,                   # filter movement/steppadding=2,                  # padding to keep same width/height),                              # output shape (16, 28, 28)nn.ReLU(),                      # activationnn.MaxPool2d(kernel_size=2),    # choose max value in 2x2 area, output shape (16, 14, 14))self.conv2 = nn.Sequential(         # input shape (16, 14, 14)nn.Conv2d(16, 32, 5, 1, 2),     # output shape (32, 14, 14)nn.ReLU(),                      # activationnn.MaxPool2d(2),                # output shape (32, 7, 7))self.out = nn.Linear(32 * 7 * 7, 10)  # fully connected layer, output 10 classesdef forward(self, x):x = self.conv1(x)x = self.conv2(x)x = x.view(x.size(0), -1)           # flatten the output of conv2 to (batch_size, 32 * 7 * 7)output = self.out(x)return output
cnn = CNN() 
print(cnn)  # 网络结构

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/501978.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ESP32-C3环境搭建

参考第二讲 ubuntu下的ESP-IDF开发环境搭建_哔哩哔哩_bilibili 宸芯IOT中的资料搭建 因为我买的板子是ESP32C3,所以没有完全按照教程去设置环境,但是也成功。 一、下载ubuntu系统以及esp-idf https://cn.ubuntu.com/download/server/step1 在以上链接…

解决npm报错:sill idealTree buildDeps

版权声明 本文原创作者:谷哥的小弟作者博客地址:http://blog.csdn.net/lfdfhl 报错信息 使用 npm 安装依赖时报错:sill idealTree buildDeps 解决方案 请按照以下步骤进行相关操作: 1、删除 C:\Users{账户}\ 文件夹中的 .npm…

【NX入门篇】

NX入门篇 一、UG NX 由来二、软件如何启动(UG NX 12.0)三、使用步骤四、常用命令 一、UG NX 由来 UG NX由来: 1969 年:UG 的开发始于美国麦道航空公司,基于 C 语言开发实现;1976 年:UG问世&am…

如何在 VSCode 中配置 C++ 开发环境:详细教程

如何在 VSCode 中配置 C 开发环境:详细教程 在软件开发的过程中,选择一个合适的开发环境是非常重要的。Visual Studio Code(VSCode)作为一款轻量级的代码编辑器,凭借其强大的扩展性和灵活性,受到许多开发者…

超越YOLO11!DEIM:先进的实时DETR目标检测

DEIM: DETR with Improved Matching for Fast Convergence arXiv: https://arxiv.org/abs/2412.04234 Project webpage:https://www.shihuahuang.cn/DEIM/ GitHub:https://github.com/ShihuaHuang95/DEIM 1 背景:DETR目标检测框架 目标检…

《GICv3_Software_Overview_Official_Release_B》学习笔记

1.不同版本的 GIC 架构及其主要功能如下图所示: 2.GICv2m(Generic Interrupt Controller Virtualization Model)是针对ARM架构的GIC(通用中断控制器)的一种扩展, GICv2m扩展为虚拟化环境中的中断管理提供了…

PADS Logic原理图中有很多页原理图,如何(怎样)删除其中一页或者多页

我们在进行PADS Logic进行原理图设计的时候,有时候可能遇到一次性设计了很多页的原理图,比如说十几页的原理图。那么我们在进行PADS Layout的时候,可能将这些原理图绘制两块板或者多块PCB板,那么这时候我们需要将其中的一张原理图…

网络安全的学习与实践经验(附资料合集)

学习资源 在线学习平台: Hack This Site:提供从初学者到高级难度的挑战任务,适合练习各种网络安全技术。XCTF_OJ:由XCTF组委会开发的免费在线网络安全网站,提供丰富的培训材料和资源。SecurityTube:提供丰…

问题清除指南|关于num_classes与 BCELoss、BCEWithLogitsLoss 和 CrossEntropyLoss 的关系

前言:关于「 num_classes 1 」引发的探究。 2024年尾声,学弟问到一个问题:在研究工作 CNNDetection 的github开源代码 networks/trainer.py 文件的 line 27 self.model resnet50(num_classes1) 中,变量 num_classes 的值为1&…

CSS——1.优缺点

<!DOCTYPE html> <html><head><meta charset"UTF-8"><title></title><link rel"stylesheet" type"text/css" href"1-02.css"/></head><body><!--css&#xff1a;层叠样式表…

ETCD渗透利用指南

目录 未指定使用put操作报错 未指定操作版本使用get报错 首先etcd分为两个版本v2和v3&#xff0c;不同的API结果无论是访问URL还是使用etcdctl进行通信&#xff0c;都会导致问题&#xff0c;例如使用etcdctl和v3进行通信&#xff0c;如果没有实名ETCDCTL_API3指定API版本会直接…

开源数据集成平台白皮书重磅发布《Apache SeaTunnel 2024用户案例合集》!

2025年新年临近&#xff0c;Apache SeaTunnel 社区用户案例精选&#x1f4d8;也跟大家见面啦&#xff01;在过去的时间里&#xff0c;SeaTunnel 社区持续成长&#xff0c;吸引了众多开发者的关注与支持。 为了致谢一路同行的伙伴&#xff0c;也为了激励更多人加入技术共创&…

【RTD MCAL 篇3】 K312 MCU时钟系统配置

【RTD MCAL 篇3】 K312 MCU时钟系统配置 一&#xff0c;文档简介二&#xff0c; 时钟系统理论与配置2.1 K312 时钟系统2.1.1 PLL2.1.2 MUX_0系统2.1.3 MUX_6 时钟输出2.1.4 option B推荐方案 2.2 EB 配置2.2.1 General 配置2.2.2 McuClockSettingConfig配置2.2.2.1 McuFIRC配置…

vite-plugin-imagemin安装问题

vite-plugin-imagemin 是一款图片资源压缩插件,能够在打包的时候显著的降低图片资源占用。不过,在安装过程中我们遇到了如下的问题。 对于上面的问题,有以下几种常见的解决方案: 1,使用 yarn 在 package.json 内配置(推荐) 打开 package.json 配置文件,然后添加如下脚本…

c-动态内存管理 (动态内存管理比较深入的分析和理解博客总结)

本节博客主要是堆C语言动态内存管理进行一定深度的谈论, 主要谈论主题请见目录~ 目录 1. 复习 与 铺垫(动态内存管理基本知识)1.1 什么是动态内存管理(基本代码)?1.2 为什么要有动态内存管理?1.3 什么是野指针? 2. C程序地址空间分布2.1 两者的空间是如上图所示的吗? 我们验…

【JVM】总结篇-运行时内存篇

文章目录 JVM内存模型&#xff08;内存结构&#xff09;程序计数器 pc虚拟机栈本地方法栈 native堆堆空间堆中一些JVM参数堆中垃圾回收过程MinorGC MajorGC FullGC年轻代GC(Minor GC)触发机制&#xff1a;老年代GC&#xff08;Major GC/Full GC&#xff09;触发机制&#xff1a…

Tableau数据可视化与仪表盘搭建-安装教程

下载 tableau.com/zh-cn/support/releases 滚动到最下方的下载 在下载的同时 我们点击登录&#xff0c;去注册一个tableau的账号 下面点击我们下载好的tableau安装程序 不要自定义安装&#xff0c;会有路径问题 点击试用14天 点击激活 激活学生 tableau.com/zh-cn/academic…

GitHub的简单操作

引言 今天开始就要开始做项目了&#xff0c;上午是要把git搭好。搭的过程中遇到好多好多的问题。下面就说一下git的简单操作流程。我们是使用的GitHub,下面也就以这个为例了 一、GitHub账号的登录注册 https://github.com/ 通过这个网址可以来到GitHub首页 点击中间绿色的S…

【2025最新计算机毕业设计】基于Spring Boot+Vue影院购票系统(高质量源码,提供文档,免费部署到本地)

作者简介&#xff1a;✌CSDN新星计划导师、Java领域优质创作者、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和学生毕业项目实战,高校老师/讲师/同行前辈交流。✌ 主要内容&#xff1a;&#x1f31f;Java项目、Python项目、前端项目、PHP、ASP.NET、人工智能…

数据安全防护

数据安全防护有几个层面 边界安全 网络防火墙负责的部分 认证 kerberos负责的部分 授权 识别用户是否有访问某个模块的权限 认证是kerberos负责的事情 1. 客户端请求认证服务器&#xff0c;希望得到访问服务端票据的票据 2.客户端拿到访问服务端票据的票据后&#xff0c;去…