开源模型迎来颠覆性突破:DeepSeek-V3与Qwen2.5如何重塑AI格局?

不用再纠结选择哪个AI模型了!chatTools 一站式提供o1推理模型、GPT4o、Claude和Gemini等多种选择,快来体验吧!

在全球人工智能模型快速发展的浪潮中,开源模型正逐渐成为一股不可忽视的力量。近日,DeepSeek-V3和Qwen 2.5系列的相继发布,再次证明了开源模型在技术创新和性能提升上的巨大潜力。这两大模型不仅在多个基准测试中取得了惊人的成绩,更以其高效的训练方法和开放透明的技术细节,为开源社区注入了新的活力。

DeepSeek-V3:以精细化MoE架构挑战闭源巨头

DeepSeek-V3:以精细化MoE架构挑战闭源巨头

DeepSeek-V3是DeepSeek团队推出的一个完全开源的LLM(大型语言模型),其总参数高达6710亿,但每个token仅激活370亿参数。这种高效的参数利用得益于其精细的MoE(混合专家)架构。

DeepSeek-V3采用了创新的MoE架构,每个token都有一个共享专家和256个路由专家,其中8个路由专家处于激活状态。此外,该模型还采用了多头潜在注意力机制,具有低等级联合压缩,用于关注键和值。多token预测技术则有助于投机解码和更好地利用训练数据。

在训练方面,DeepSeek-V3使用了14.8万亿个token,训练成本仅为560万美元,使用了2788K H800 GPU小时。如此高效的训练得益于精细的MoE架构、FP8混合精度训练以及动态调整上下文长度。DeepSeek团队通过算法、框架和硬件的协同设计,克服了大型MoE模型训练中的通信瓶颈,实现了在训练中有效利用计算资源。两阶段的上下文长度扩展,首先将上下文从4k令牌扩展到32k令牌,然后扩展到128k令牌,使得模型的长文本处理能力得到了显著提升。

DeepSeek-V3在多个基准测试中的表现令人印象深刻,例如在MMLU上达到了88.5,在GPQA上达到了59.1,在MATH上达到了90.2。其性能可与GPT-4o和Claude-3.5-Sonnet等领先的闭源模型相媲美,证明了开源模型在性能上完全有能力挑战闭源巨头。

DeepSeek团队不仅在HuggingFace上共享了模型,还在其“DeepSeek-V3技术报告”中提供了有关模型的详细信息,这种开放透明的态度无疑将加速开源社区的共同进步。

Qwen 2.5:以长上下文和多模态能力引领开源潮流

阿里巴巴Qwen团队推出的Qwen 2.5系列LLM,同样在开源模型领域取得了显著进展。Qwen 2.5系列由多个开放式权重基础和指令调整模型组成,参数范围从0.5B到72B。此外,还有两种专有的混合专家(MoE)型号,Qwen2.5-Turbo和Qwen2.5-Plus。

Qwen 2.5系列模型在架构上采用了基于Transformer的解码器,并利用了分组查询注意力(GQA)、SwiGLU激活、旋转位置嵌入(RoPE)等技术。在训练方面,Qwen团队将训练前数据集扩展到18万亿个代币,并纳入了更多样和高质量的数据。训练后,他们使用了超过100万个样本的复杂监督微调(SFT),并结合了多阶段强化学习(DPO,然后是GRPO)。

Qwen 2.5系列模型的最大亮点在于其强大的长上下文处理能力。该系列模型利用YARN和Dual Chunk Attention(DCA)技术,使Qwen2.5-Turbo的上下文长度高达100万个令牌。此外,Qwen团队还发布了基于Qwen 32B的推理AI模型Qwen QwQ,以及基于Qwen2-VL-72B的视觉推理模型QvQ,进一步丰富了Qwen模型家族的功能。

在性能方面,Qwen2.5-72B-Instruct的性能可与Llama-3-405B-Instruct相媲美。Qwen2.5-Turbo在1M令牌密码检索任务中实现了100%的准确率。Qwen 2.5还进一步成为他们最新和最伟大的专业模型的基础:Qwen2.5-Math、Qwen2.5-Coder、QwQ和QvQ等多模态模型。

与DeepSeek团队一样,阿里巴巴Qwen团队也发布了Qwen2.5技术报告,提供了关于该系列模型的详细信息,体现了开源社区的开放精神。

推动AI技术

结语

DeepSeek-V3和Qwen 2.5系列的发布,无疑是开源模型发展史上的重要里程碑。它们以其卓越的性能、高效的训练方法和开放透明的技术细节,为开源社区注入了新的活力,也为AI技术的未来发展指明了方向。我们有理由相信,随着开源社区的不断壮大,开源模型必将在未来的AI竞争中扮演越来越重要的角色。

不用再纠结选择哪个AI模型了!chatTools 一站式提供o1推理模型、GPT4o、Claude和Gemini等多种选择,快来体验吧!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/502385.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

微信开发工具git提交到码云

超简单,适用新手快速实现新项目备份到码云。步骤如下: 1、先在码云创建一个仓库,不要初始化readme文件 2、点击微信开发工具版本管理,如果第一次,会提示初始化仓库,照做就行 3、配置一些git信息 输入你的码…

PHP7和PHP8的最佳实践

php 7 和 php 8 的最佳实践包括:使用类型提示以避免运行时错误;利用命名空间组织代码并避免命名冲突;采用命名参数、联合类型等新特性增强可读性;用错误处理优雅地处理异常;关注性能优化,如避免全局变量和选…

数据分享:空气质量数据--哈尔滨

说明:如需数据可以直接到文章最后关注获取。 1.数据背景 地理位置与气候条件:哈尔滨位于中国东北部,黑龙江省南部,松花江中游。由于其地理位置,冬季寒冷且漫长,夏季短促而温热。这种气候特点对空气质量…

端口镜像SPAN与RSPAN

端口镜像概述 端口镜像的作用主要在于一些难度较大的网络技术的学习中,我们通过抓包对报文的分析,可以更好地理解 还有的就是在网络排障的过程中,我们可以通过抓包分析数据报文的收发等状态,来判断在哪个设备节点上出现了问题 …

基于Web的足球青训俱乐部管理后台系统的设计与开发源码(springboot+mysql+vue)

风定落花生,歌声逐流水,大家好我是风歌,混迹在java圈的辛苦码农。今天要和大家聊的是一款基于springboot的基于Web的足球青训俱乐部管理后台系统。项目源码以及部署相关请联系风歌,文末附上联系信息 。 项目简介: 基…

IDEA 撤销 merge 操作(详解)

作为一个开发者,我们都知道Git是一个非常重要的版本控制工具,尤其是在协作开发的过程中。然而,在使用Git的过程中难免会踩一些坑,今天我来给大家分享一个我曾经遇到的问题:在使用IDEA中进行merge操作后如何撤销错误的合…

用matlab调用realterm一次性发送16进制数

realterm采用PutString接口进行发送,需要注意的是发送的16进制数前面要加入0x标志。只有这样,realterm才能将输入的字符串识别为16进制数的形式。 另外,PutString函数支持两个参数输入,第一个参数为字符串,第二个参数为发送形式&…

C++基础概念复习

前言 本篇文章作基础复习用,主要是在C学习中遇到的概念总结,后续会继续补充。如有不足,请前辈指出,万分感谢。 1、什么是封装,有何优点,在C中如何体现封装这一特性? 封装是面向对象编程&…

【C++】矩阵转置问题详解与优化

博客主页: [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: C 文章目录 💯前言💯题目解析💯第一种实现方式:我的初始做法实现思路优缺点分析 💯第二种实现方式:我的优化做法实现思路优缺点分析 &#x1f4a…

在线二维码生成器-GO在线工具-文本工具

一款高效、便捷的在线二维码生成工具,支持生成文本、链接、名片等多种类型的二维码。无需安装软件,快速在线生成高清二维码,适用于个人使用和商业推广。免费使用,让二维码生成变得更简单。 gotool

【微服务】2、网关

Spring Cloud微服务网关技术介绍 单体项目拆分微服务后的问题 服务地址问题:单体项目端口固定(如黑马商城为8080),拆分微服务后端口各异(如购物车808、商品8081、支付8086等)且可能变化,前端难…

SpringBoot3-深入理解自动配置类的原理(尚硅谷SpringBoot3-雷神)

文章目录 目录了解自动配置 一、导入对应场景的Mean依赖:1、引入依赖**找到自动配置类的所有配置都存放在哪里** 二、编写主程序:SpringBootApplication观察源码时所需要知道的几个核心注解:1、观察SpringBootApplication源码都做了什么 三、…

图像分割基础:使用Python和scikit-image库

大家好,今天我们将一起探讨图像分割的基础知识,并使用Python编程语言以及scikit-image库来实现一个简单的图像分割示例。图像分割是图像处理中的一项重要技术,它允许我们将图像划分为多个部分或对象,这对于图像分析和计算机视觉任…

SpringBoot中实现拦截器和过滤器

【SpringBoot中实现过滤器和拦截器】 1.过滤器和拦截器简述 过滤器Filter和拦截器Interceptor,在功能方面很类似,但在具体实现方面差距还是比较大的。 2.过滤器的配置 2.1 自定义过滤器,实现Filter接口(SpringBoot 3.0 开始,jak…

基于LightGBM的集成学习算法

目录 一、LightGBM基本原理1.1 基于直方图的决策树算法1.1.1 连续变量分箱 1.2 互斥特征捆绑1.2.1 互斥特征捆绑计算流程1.2.2 互斥特征捆绑算法基本原理1.2.2.1 冲突比例(conflict_rate)1.2.2.2 图着色1.2.2.3 特征捆绑 1.3 基于梯度的单边采样&#xf…

trendFinder - 利用 AI 掌握社交媒体上的热门话题

1600 Stars 177 Forks 7 Issues 2 贡献者 MIT License Javascript 语言 代码: https://github.com/ericciarla/trendFinder 更多AI开源软件:AI开源 - 小众AI Trend Finder 收集并分析来自关键影响者的帖子,然后在检测到新趋势或产品发布时发送 Slack 通知…

Level DB --- BloomFilterPolicy

BloomFilterPolicy是Level DB中重要的数据过滤模块,它主要用来先过滤在Block中不存在的key,减少Block的搜索计算量。 Bloom Filter 从原理上来讲Bloom FIlter相对来说原理还是比较简单的,将一个key经过一次(组合)ha…

ELK 使用教程采集系统日志 Elasticsearch、Logstash、Kibana

前言 你知道对于一个系统的上线考察,必备的几样东西是什么吗?其实这也是面试中考察求职者,是否真的做过系统开发和上线的必备问题。包括:服务治理(熔断/限流) (opens new window)、监控 (opens new window)和日志,如果…

【MySQL】九、表的内外连接

文章目录 前言Ⅰ. 内连接案例:显示SMITH的名字和部门名称 Ⅱ. 外连接1、左外连接案例:查询所有学生的成绩,如果这个学生没有成绩,也要将学生的个人信息显示出来 2、右外连接案例:对stu表和exam表联合查询,把…

机器学习周报-ModernTCN文献阅读

文章目录 摘要Abstract 0 提升有效感受野(ERF)1 相关知识1.1 标准卷积1.2 深度分离卷积(Depthwise Convolution,DWConv)1.3 逐点卷积(Pointwise Convolution,PWConv)1.4 组卷积(Grou…