【线性代数】通俗理解特征向量与特征值

这一块在线性代数中属于重点且较难理解的内容,下面仅个人学习过程中的体会,错误之处欢迎指出,有更简洁易懂的理解方式也欢迎留言学习。

文章目录

  • 概念
  • 计算
  • 几何直观理解
  • 意义

概念

矩阵本身就是一个线性变换,对一个空间中的向量应用这个矩阵,一般几何表现上为向量发生了旋转、伸缩、反射等变换。如果存在一个向量,在变换前变换后方向不变,这样的向量就是这个矩阵的特征向量。

计算

按照上面定义,对于一个矩阵 A A A和一个向量 v v v A ⋅ v = λ v A \cdot v=\lambda v Av=λv,也就是向量 v v v在变换前后只有长度上的变化,没有方向上的变化,这样的向量 v v v和缩放倍数 λ \lambda λ分别叫做特征值和特征向量。

以下面这个矩阵A为例计算特征值:
[ 2 1 0 1 ] \begin{bmatrix} 2&1 \\ 0&1 \end{bmatrix} [2011]
A ⋅ v = λ v A \cdot v=\lambda v Av=λv
=> A ⋅ v = λ I v A \cdot v=\lambda I v Av=λIv
=> ( A − λ I ) ⋅ v = 0 (A - \lambda I) \cdot v=\mathbf{0} (AλI)v=0
=> A − λ I = 0 A - \lambda I=0 AλI=0
=>
[ 2 − λ 1 0 1 − λ ] = 0 \begin{bmatrix} 2-\lambda&1 \\ 0&1-\lambda \end{bmatrix}=0 [2λ011λ]=0
=> ( 2 − λ ) ( 1 − λ ) = 0 (2-\lambda)(1-\lambda)=0 (2λ)(1λ)=0
λ = 1 \lambda=1 λ=1 λ = 2 \lambda=2 λ=2

1) λ = 1 \lambda=1 λ=1时: ( A − λ I ) ⋅ v = 0 (A - \lambda I) \cdot v=\mathbf{0} (AλI)v=0
=>
[ 1 1 0 0 ] [ x y ] = [ 0 0 ] \begin{bmatrix} 1&1 \\ 0&0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}= \begin{bmatrix} 0 \\ 0 \end{bmatrix} [1010][xy]=[00]
=>
x [ 1 0 ] + y [ 1 0 ] = [ 0 0 ] x \begin{bmatrix} 1\\ 0 \end{bmatrix}+ y \begin{bmatrix} 1\\ 0 \end{bmatrix}= \begin{bmatrix} 0 \\ 0 \end{bmatrix} x[10]+y[10]=[00]
=>
x + y = 0 x+y=0 x+y=0,所以(-1, 1)是 λ = 1 \lambda=1 λ=1时的一个特征向量。

2)同样的过程可以求出 λ = 2 \lambda=2 λ=2时(1, 0)是一个特征向量。

从计算过程还可以看出:特征值与特征向量的取值无关,只跟矩阵本身有关。且特征向量可以在该向量的所在直线上有无穷多个。

几何直观理解

上面计算的特征值和特征向量表明,在二维空间中对一个图形应用矩阵A的变换,该变换会将原图形在向量(1, -1)的方向维持不变,将向量(-1, 1)的方向拉伸2倍。

可视化:

import numpy as np
import matplotlib.pyplot as plt# 定义一个二维椭圆
def generate_ellipse(num_points=100, a=2, b=1):theta = np.linspace(0, 2 * np.pi, num_points)x = a * np.cos(theta)y = b * np.sin(theta)return x, y# 定义一个非对称变换矩阵
transformation_matrix = np.array([[2, 1],[0, 1]])# 计算特征值和特征向量
eigenvalues, eigenvectors = np.linalg.eig(transformation_matrix)# 生成原始椭圆
x, y = generate_ellipse()# 将椭圆应用变换
xy_transformed = np.dot(transformation_matrix, np.array([x, y]))
x_transformed, y_transformed = xy_transformed# 动态计算新的坐标轴范围
x_min, x_max = x_transformed.min(), x_transformed.max()
y_min, y_max = y_transformed.min(), y_transformed.max()
padding = 0.5  # 添加一些额外的空间# 绘制原始和变换后的椭圆
fig, ax = plt.subplots(1, 2, figsize=(12, 6))# 原始椭圆
ax[0].plot(x, y, color='b')
ax[0].set_title('Original Ellipse')
ax[0].set_xlim(-2.5, 2.5)  # 紧凑的范围
ax[0].set_ylim(-1.5, 1.5)
ax[0].set_aspect('equal', 'box')# 变换后的椭圆
ax[1].plot(x_transformed, y_transformed, color='r')
ax[1].set_title('Transformed Ellipse')
ax[1].set_xlim(x_min - padding, x_max + padding)
ax[1].set_ylim(y_min - padding, y_max + padding)
ax[1].set_aspect('equal', 'box')# 绘制特征向量
origin = np.array([[0, 0], [0, 0]])  # 原点
ax[1].quiver(*origin, eigenvectors[0, :], eigenvectors[1, :], color=['g', 'g'], angles='xy', scale_units='xy', scale=1)# 在图形旁边显示变换矩阵和特征值
textstr = f'Transformation Matrix:\n{transformation_matrix}\n\n'
textstr += f'Eigenvalues:\n{eigenvalues}\n\n'
textstr += f'Eigenvectors:\n{eigenvectors}'props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
plt.gcf().text(0.5, 0.02, textstr, fontsize=10, bbox=props)plt.tight_layout()
plt.show()

在这里插入图片描述
绿色的是两个特征向量。

从左边椭圆 => 右边椭圆的变化过程, 可以看成是先将整个椭圆沿着向量(1, 0)方向拉伸2倍,后将图形在向量(-1, 1)方向还原(因为在上一步两边拉伸的过程中,每一个原刻度处的圆弧上下距离都会被拉远,所以(-1, 1)方向也会被被拉长),所以整个图形表现为:两边拉长,且左低右高。

意义

特征向量和特征值的意义个人理解主要在于用来描述矩阵所表示的线性变换,也就是用特征向量和特征值来近似刻画矩阵的效果。

怎么理解这种近似刻画呢?个人理解是,无论是一个平面图形还是立体图形,以及更高维…,只要几个不变的方向拉伸效果确定了,那么其他方向也就确定了,可以这么确定的理由是:线性变换! 线性,也就是不会出现陡增或陡减,是一种“平缓”的过渡。

特征向量和特征值也可以被用来简化矩阵高次幂的计算。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/504252.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

1.2.1-2部分数据结构的说明02_链表

(1)链表数据结构: 概念: 将列表中相互连接的节点不连续的存储在内存中。与数据不同,我们无法再恒定时间内访问任何元组,如果遍历所有则花费时间与元素总数n成正比。插入和删除1个元素的时间复杂度都是O(n…

使用 uniapp 开发微信小程序遇到的坑

0. 每次修改代码时,都会触发微信开发工具重新编译 终极大坑,暂未找到解决方案 1. input 无法聚焦问题 问题:在小程序开发工具中,input 会突然无法聚焦,重启也不行。但是真机调试可以正常聚焦。 解决办法&#xff1a…

maven的简单介绍

目录 1、maven简介2、maven 的主要特点3、maven的下载与安装4、修改配置文件5、私服(拓展) 1、maven简介 Maven 是一个广泛使用的项目管理和构建工具,主要应用于 Java 项目。Maven 由 Apache 软件基金会开发和维护,它提供了一种简洁且一致的方法来构建、…

Mac中配置vscode(第一期:python开发)

1、终端中安装 xcode-select --install #mac的终端中安装该开发工具 xcode-select -p #显示当前 Xcode 命令行工具的安装路径注意:xcode-select --install是在 macOS 上安装命令行开发工具(Command Line Tools)的关键命令。安装的主要组件包括:C/C 编…

新车月交付突破2万辆!小鹏汽车“激活”智驾之困待解

首次突破月交付2万辆规模的小鹏汽车,稳吗? 本周,高工智能汽车研究院发布的最新监测数据显示,2024年11月,小鹏汽车在国内市场(不含出口)交付量(上险口径,下同&#xff09…

STM32烧写失败之Contents mismatch at: 0800005CH (Flash=FFH Required=29H) !

一)问题:用ULINK2给STM32F103C8T6下载程序,下载方式设置如下: 出现下面两个问题: 1)下载问题界面如下: 这个错误的信息大概可以理解为,在0x08000063地址上读取到flash存储为FF&am…

【博主推荐】 Microi吾码开源低代码平台,快速建站,提高开发效率

🍬引言 🍬什么是低代码平台? 低代码平台(Low-Code Platform)是一种使开发人员和业务用户可以通过图形化界面和少量的编程来创建应用程序的开发工具。与传统的编程方式相比,低代码平台大大简化了开发过程&a…

SpringBoot日常:集成Kafka

文章目录 1、pom.xml文件2、application.yml3、生产者配置类4、消费者配置类5、消息订阅6、生产者发送消息7、测试发送消息 本章内容主要介绍如何在springboot项目对kafka进行整合,最终能达到的效果就是能够在项目中通过配置相关的kafka配置,就能进行消息…

加速科技荣获“浙江省企业研究院”认定

近日,浙江省经济和信息化厅公布“2024年认定(备案)省级企业研发机构名单”。经过多轮严格评审和公示,加速科技荣获“省企业研究院”认定。这是加速科技继获国家级专精特新“小巨人”企业认定荣誉后的又一里程碑。 “浙江省企业研究…

mysql中查询json的技巧

前置工作 CREATE TABLE mk_task_record (task_id int NOT NULL AUTO_INCREMENT,task_name varchar(50) DEFAULT NULL,result_json json DEFAULT NULL,result_str longtext,create_time datetime DEFAULT NULL,update_time datetime DEFAULT NULL,PRIMARY KEY (task_id),KEY ta…

arcgis的合并、相交、融合、裁剪、联合、标识操作的区别和使用

1、相交 需要输入两个面要素,最终得到的是两个输入面要素相交部分的结果面要素。 2、合并 合并能将两个单独存放的两个要素类的内容,汇集到一个要素类里面。 3、融合 融合能将一个要素类内的所有元素融合成一个整体。 4、裁剪 裁剪需要输入两个面要…

【网络协议】静态路由详解

网络中的路由器通过以下两种方式之一发现远程网络: 静态配置路由动态路由协议 在本文,我们将学习关于静态路由的各种概念,例如如何配置静态路由、路由表如何进行决策、路由接口等相关知识。 文章目录 引言直连网络静态路由路由表原则原则1原…

C++ 复习总结记录六

C 复习总结记录六 模板初阶主要内容 1、泛型编程 2、函数模板 3、类模板 4、STL 简介 一 泛型编程 如何实现一个通用的交换函数 void Swap(int& left, int& right) {int temp left;left right;right temp; } void Swap(double& left, double& right…

Leecode刷题C语言之字符串中最大的3位相同数字

执行结果:通过 执行用时和内存消耗如下&#xff1a; char* largestGoodInteger(char* num) {int n strlen(num);char* res NULL;for (int i 0; i < n - 2; i) {if (num[i] num[i 1] && num[i 1] num[i 2]) {if (res NULL || strncmp(&num[i], res, 3)…

《繁星路》V1.8.3(Build16632266)官方中文学习版

《繁星路》官方中文版https://pan.xunlei.com/s/VODae2_2Z3QyMF02I5y321uHA1?pwdqgsh# 作为一款星际模拟游戏&#xff0c;完美融合了硬科幻元素与基地建设玩法&#xff0c;体验改造行星的恢弘与壮阔。化身人工意识AMI&#xff0c;遵照基本指示推进火星改造的各项工作&#xf…

《Spring Framework实战》9:4.1.4.依赖注入

欢迎观看《Spring Framework实战》视频教程 典型的企业应用程序不是由单个对象&#xff08;或Spring术语中的bean&#xff09;组成。即使是最简单的应用程序也有几个对象协同工作&#xff0c;以呈现最终用户所认为的连贯应用程序。下一节将解释如何从定义多个独立的bean定义到一…

STM32-笔记37-吸烟室管控系统项目

一、项目需求 1. 使用 mq-2 获取环境烟雾值&#xff0c;并显示在 LCD1602 上&#xff1b; 2. 按键修改阈值&#xff0c;并显示在 LCD1602 上&#xff1b; 3. 烟雾值超过阈值时&#xff0c;蜂鸣器长响&#xff0c;风扇打开&#xff1b;烟雾值小于阈值时&#xff0c;蜂鸣器不响…

云安全博客阅读(三)

WAF强固之盾&#xff1a;机器学习赋能下的语义分析 WAF 中&#xff0c;传统的基于正则的检测方法依赖正则的运营更新&#xff0c;以不断防护新的攻击方法&#xff1b; 主要流程为&#xff1a;HTTP包 -> payload解码 -> 正则匹配 但是&#xff0c;攻击者可以通过修改攻…

个人博客搭建(二)—Typora+PicGo+OSS

个人博客站—运维鹿: http://www.kervin24.top CSDN博客—做个超努力的小奚&#xff1a; 做个超努力的小奚-CSDN博客 一、前言 博客搭建完一直没有更新&#xff0c;因为WordPress自带的文档编辑器不方便&#xff0c;以前用CSDN写作的时候&#xff0c;习惯了Typora。最近对比了…

spring boot 集成 knife4j

1、knife4j介绍以及环境介绍 knife4j是为Java MVC框架集成Swagger生成Api文档的增强解决方案,前身是swagger-bootstrap-ui,取名knife4j是希望它能像一把匕首一样小巧,轻量,并且功能强悍!其底层是对Springfox的封装&#xff0c;使用方式也和Springfox一致&#xff0c;只是对接口…