BEVFusion论文阅读

1. 简介

融合激光雷达和相机的信息已经变成了3D目标检测的一个标准,当前的方法依赖于激光雷达传感器的点云作为查询,以利用图像空间的特征。然而,人们发现,这种基本假设使得当前的融合框架无法在发生 LiDAR 故障时做出任何预测,无论是轻微还是严重。这从根本上限制了实际场景下的部署能力。相比之下,在BEVFusion框架中,其相机流不依赖于 LiDAR 数据的输入,从而解决了以前方法的缺点。

有两个版本的BEVFusion,分别是北大与阿里合作的Bevfusion: A Simple and Robust LiDAR-Camera和麻省理工发表的Bevfusion: Multi-task multi-sensor fusion with unified bird's-eye view representation,下面分别进行介绍。

2. PKU BEVFusion

作者认为,LiDAR和相机融合的理想框架应该是,无论彼此是否存在,单个模态的每个模型都不应该失败,但同时拥有两种模态将进一步提高感知准确性。为此,作者提出了一个令人惊讶的简单而有效的框架,它解决了当前方法的LiDAR相机融合的依赖性,称为BEVFusion。具体来说,如图1 (c)所示,作者的框架有两个独立的流,它们将来自相机和LiDAR传感器的原始输入编码为同一BEV空间内的特征。然后作者设计了一个简单的模块,在这两个流之后融合这些BEV的特征,以便最终的特征可以传递到下游任务架构中。由于作者的框架是一种通用方法,作者可以将当前用于相机和LiDAR的单模态BEV模型合并到作者的框架中。作者采用Lift-Splat-Shoot作为相机流,它将多视图图像特征投影到3D车身坐标特征以生成相机BEV特征。同样,对于LiDAR流,作者选择了三个流行的模型,两个基于超体素(voxel)的模型和一个基于柱子(pillar)的模型将LiDAR特征编码到BEV空间中。

图1 框架对比。以前的融合方法可以大致分为 (a) 点级point-level融合机制,将图像特征投影到原始点云上,即找到点云和图像特征对应的部分,融合信息,以及 (b) 特征级融合机制,分别在每个视图图像上投影LiDAR特征或proposal以提取RGB信息。(c) 相比之下,作者提出一个新框架,相机和lidar的输入分开
图2 BEVFusion框架。两个流分别提取特征并将它们转换到相同的BEV空间:i)将相机视图特征投影到3D车身坐标以生成相机BEV特征;ii) 3D backbone从点云中提取LiDAR BEV特征。然后融合两种模态的BEV特征。最后,基于融合的BEV特征构建特定任务的头部,并预测3D目标。其中蓝框是预测,红圈是错误预测

3. MIT BEVFusion

3.1. 统一表示

不同的视图中可以存在不同的特征。例如,相机特征在透视视图中,而激光雷达/雷达特征通常在3D/鸟瞰视图中。即使是相机功能,每个功能都有不同的视角(即前、后、左、右)。这个视图差异使得特征融合变得困难,因为不同特征张量中的相同元素可能对应完全不同的空间位置(在这种情况下,naive elementwise特征融合将不起作用)。因此,找到一个共享的表示是至关重要的,这样(1)所有传感器特征都可以很容易地转换为它而不丢失信息,(2)它适合于不同类型的任务。

相机。在RGB-D数据的激励下,一种选择是将LiDAR点云投影到相机平面上,并渲染2.5D稀疏深度。然而,这种转换在几何上是有损的。深度图上的两个邻居在3D空间中可以彼此远离。这使得相机视图对于专注于物体/场景几何的任务(如3D物体检测)的效果较差。

激光雷达。大多数最先进的传感器融合方法用相应的摄像机特征(例如语义标签、CNN特征或虚拟点)装饰LiDAR点。然而,这种摄像头到激光雷达的投影在语义上是有损耗的。相机和激光雷达功能的密度有很大的不同,导致只有不到5%的相机功能与激光雷达点匹配(对于32通道激光雷达扫描仪)。放弃相机特征的语义密度严重损害了模型在面向语义任务(如BEV地图分割)上的性能。类似的缺点也适用于潜在空间中的最新融合方法(例如,对象查询)。

鸟瞰图。采用鸟瞰图(BEV)作为融合的统一表示。这个视图对几乎所有的感知任务都是友好的,因为输出空间也是在BEV中。更重要的是,向BEV的转换同时保持几何结构(来自激光雷达特征)和语义密度(来自相机特征)。一方面,LiDAR- bev投影将稀疏的LiDAR特征沿高度维度平坦化,从而不会在图1a中产生几何失真。另一方面,相机到BEV投影将每个相机特征像素投射回3D空间中的射线(下一节将详细介绍),这可能导致图1c中密集的BEV特征映射,其中保留了来自相机的完整语义信息。

3.2. 高效的摄像头到BEV的转换

摄像头到BEV的转换不是简单的,因为与每个摄像头特征像素相关的深度本质上是模糊的。根据LSS和BEVDet,他们明确地预测了每个像素的离散深度分布。然后,他们将每个特征像素沿摄像机射线分散到D个离散点,并根据相应的深度概率重新缩放相关特征(图3a)。这将生成一个大小为N HW D的相机特征点云,其中N是相机的数量,(H, W)是相机特征映射的大小。该三维特征点云沿x、y轴进行量化,步长为r(例如0.4m)。他们使用BEV池化操作来聚集每个r × r BEV网格中的所有特征,并沿z轴将特征平坦化。

虽然简单,但BEV池化的效率和速度惊人地低,在RTX 3090 GPU上需要超过500毫秒(而他们模型的其余部分只需要大约100毫秒)。这是因为摄像特征点云非常大:对于典型的工作负载,每帧可能生成大约200万个点,比激光雷达特征点云的密度大两个数量级。为了克服这一效率瓶颈,他们提出了通过预计算和间隔缩短来优化BEV池。

预先计算。BEV池化的第一步是将摄像机特征点云中的每个点与BEV网格关联。与LiDAR点云不同,相机特征点云的坐标是固定的(只要相机的intrinsic和extrinsics保持不变,这通常是在适当校准后的情况下)。在此基础上,他们预先计算每个点的3D坐标和BEV网格索引。他们还根据网格索引对所有点进行排序,并记录每个点的排名。在推理过程中,他们只需要根据预先计算的秩对所有特征点进行重新排序。这种缓存机制可以将网格关联的延迟从17ms减少到4ms。

间隔的减少。网格关联后,同一BEV网格内的所有点在张量表示中都是连续的。BEV池化的下一步是通过一些对称函数(例如,均值、最大值和和)聚合每个BEV网格中的特征。如图3b所示,现有实现首先计算所有点的前缀和,然后减去索引变化边界处的值。然而,前缀和操作需要GPU上的树约简,并产生许多未使用的部分和(因为他们只需要边界上的那些值),这两者都是低效的。为了加速特征聚合,他们实现了一个专门的GPU内核,它直接在BEV网格上并行:他们为每个网格分配一个GPU线程,计算它的间隔和并将结果写回来。该内核消除了输出之间的依赖关系(因此不需要多级树约化),并避免将部分和写入DRAM,将特征聚合的延迟从500ms减少到2ms(图3c)。

其他。通过优化的BEV池化,相机到BEV的转换速度提高了40倍:延迟从超过500ms减少到12ms(仅占他们模型端到端运行时间的10%),并且在不同的特征分辨率上都能很好地伸缩(图3d)。这是在共享BEV表示中统一多模态感官特征的关键使能器。我们同时进行的两项工作也确定了仅在相机的3D检测中的效率瓶颈。他们通过假设均匀的深度分布或截断每个BEV网格中的点来近似视图转换器。相比之下,他们的技术是精确的,没有任何近似,同时仍然更快。

3.3. 全卷积融合

将所有的感官特征转换为共享的BEV表示,他们可以很容易地用一个元素操作符(如拼接)将它们融合在一起。尽管在同一空间中,由于视图转换器的深度不准确,LiDAR BEV特征和相机BEV特征仍然会在一定程度上出现空间错位。为此,他们应用了一个基于卷积的BEV编码器(带有一些剩余块)来补偿这种局部失调。他们的方法可能从更精确的深度估计中受益(例如,用地面真实深度监视视图转换器),他们将其留给未来的工作。

3.4. 多任务头

他们将多个特定于任务的头应用到融合BEV特征图中。他们的方法适用于大多数3D感知任务。他们展示了两个例子:三维物体检测和BEV地图分割。

检测。他们使用特定于类的中心热图头来预测所有对象的中心位置,并使用一些回归头来估计对象的大小、旋转和速度。我们建议读者参考之前的3D检测论文[1, 67, 68]了解更多细节。

分割。不同的地图类别可能会重叠(例如,人行横道是可驾驶空间的子集)。因此,他们将这个问题表述为多个二进制语义分割,每个类一个。他们遵循CVT,用标准focal loss来训练分割头。

参考文献

https://download.csdn.net/blog/column/11257654/134724055

Bevfusion: A Simple and Robust LiDAR-Camera

BEVFusion: A Simple and Robust LiDAR-Camera Fusion Framework - 知乎

BEVFusion:A Simple and Robust LiDAR-Camera Fusion Framework 论文笔记_bevfusion: a simple and robust lidar-camera fusion-CSDN博客

Bevfusion: Multi-task multi-sensor fusion with unified bird's-eye view representation

技术精讲 | BEVFusion: 基于统一BEV表征的多任务多传感器融合-CSDN博客 

BEVFusion论文解读-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/5086.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

二十七、资源限制-LimitRange

LimitRange生产必备 在调度的时候 requests 比较重要,在运行时 limits 比较重要。 一、产生原因 生产中只有ResourceQuota是不够的 只配置ResourceQuotas的情况下,pod的yaml文件没有配置resources配置,都是0的话,就可以无限配置,永远达不到limit LimitRange做了什么 如…

计算机网络 (54)系统安全:防火墙与入侵检测

前言 计算机网络系统安全是确保网络通信和数据不受未经授权访问、泄露、破坏或篡改的关键。防火墙和入侵检测系统(IDS)是维护网络系统安全的两大核心组件。 一、防火墙 定义与功能 防火墙是一种用来加强网络之间访问控制的特殊网络互联设备,它…

鸿蒙Harmony json转对象(1)

案例1 运行代码如下 上图的运行结果如下: 附加1 Json_msg interface 案例2 import {JSON } from kit.ArkTS; export interface commonRes {status: numberreturnJSON: ESObject;time: string } export interface returnRes {uid: stringuserType: number; }Entry Component …

光谱相机在智能冰箱的应用原理与优势

食品新鲜度检测 详细可点击查看汇能感知团队实验报告:高光谱成像技术检测食物新鲜度 检测原理:不同新鲜程度的食品,其化学成分和结构会有所不同,在光谱下的反射、吸收等特性也存在差异。例如新鲜肉类和蔬菜中的水分、蛋白质、叶…

BottomNavigationBar组件的用法

文章目录 1 概念介绍2 使用方法3 示例代码 我们在上一章回中介绍了TextField Widget,本章回中将介绍BottomNavigationBar Widget。闲话休提,让我们一起Talk Flutter吧。 1 概念介绍 我们在本章回中将介绍一个新的Widget:BottomNavigationBar,它就是我们…

总结5..

#include<stdio.h> struct nb {//结构体列队 int x, y;//x为横坐标&#xff0c;y为纵坐标 int s, f;//s为步数&#xff0c;//f为方向 }link[850100]; int n, m, x, y, p, q, f; int hard 1, tail 1; int a[52][52], b[52][52], book[52][52][91]; int main() { …

媒体新闻发稿价格怎么算?移动端发稿价格低的原因有哪些?

对于有过一定发稿经历的朋友&#xff0c;面对不同媒体新闻渠道的发稿价格肯定有所疑惑。尤其同一家媒体&#xff0c;移动端经常比网页端投放渠道的价格要低。到底有哪些方面的原因&#xff0c;导致了这一情况&#xff1f;就让小编来分享下自己的发稿经验。 一、内容展示效果 考…

【Linux系统编程】—— 从零开始实现一个简单的自定义Shell

文章目录 什么是自主shell命令行解释器&#xff1f;实现shell的基础认识全局变量的配置初始化环境变量实现内置命令&#xff08;如 cd 和 echo&#xff09;cd命令&#xff1a;echo命令&#xff1a; 构建命令行提示符获取并解析用户输入的命令执行内置命令与外部命令Shell的主循…

html,css,js的粒子效果

这段代码实现了一个基于HTML5 Canvas的高级粒子效果&#xff0c;用户可以通过鼠标与粒子进行交互。下面是对代码的详细解析&#xff1a; HTML部分 使用<!DOCTYPE html>声明文档类型。<html>标签内包含了整个网页的内容。<head>部分定义了网页的标题&#x…

.Net Core微服务入门系列(一)——项目搭建

系列文章目录 1、.Net Core微服务入门系列&#xff08;一&#xff09;——项目搭建 2、.Net Core微服务入门全纪录&#xff08;二&#xff09;——Consul-服务注册与发现&#xff08;上&#xff09; 3、.Net Core微服务入门全纪录&#xff08;三&#xff09;——Consul-服务注…

【JavaSE】(8) String 类

一、String 类常用方法 1、构造方法 常用的这4种构造方法&#xff1a;直接法&#xff0c;或者传参字符串字面量、字符数组、字节数组。 在 JDK1.8 中&#xff0c;String 类的字符串实际存储在 char 数组中&#xff1a; String 类也重写了 toString 方法&#xff0c;所以可以直…

Linux-C/C++--深入探究文件 I/O (下)(文件共享、原子操作与竞争冒险、系统调用、截断文件)

经过上一章内容的学习&#xff0c;了解了 Linux 下空洞文件的概念&#xff1b;open 函数的 O_APPEND 和 O_TRUNC 标志&#xff1b;多次打开同一文件&#xff1b;复制文件描述符&#xff1b;等内容 本章将会接着探究文件IO&#xff0c;讨论如下主题内容。  文件共享介绍&…

npm run dev 时直接打开Chrome浏览器

package.json 修改下配置 "scripts": {"dev": "vite --open chrome.exe",......}, "dev": "vite" 修改为 "dev": "vite --open chrome.exe" 这样方便一点&#xff0c;省得每次去点调试窗口的链接

微软预测 AI 2025,AI Agents 重塑工作形式

1月初&#xff0c;微软在官网发布了2025年6大AI预测&#xff0c;分别是&#xff1a;AI模型将变得更加强大和有用、AI Agents将彻底改变工作方式、AI伴侣将支持日常生活、AI资源的利用将更高效、测试与定制是开发AI的关键以及AI将加速科学研究突破。 值得一提的是&#xff0c;微…

《从入门到精通:蓝桥杯编程大赛知识点全攻略》(五)-数的三次方根、机器人跳跃问题、四平方和

本博客将详细探讨如何通过二分查找算法来解决这几个经典问题。通过几个实际的例子&#xff0c;我们将展示如何在这些问题中灵活应用二分查找&#xff0c;优化计算过程&#xff0c;并在面对大数据量时保持高效性。 目录 前言 数的三次方根 算法思路 代码如下 机器人跳跃问题…

微服务知识——4大主流微服务架构方案

文章目录 1、微服务聚合模式2、微服务共享模式3、微服务代理模式4、微服务异步消息模式 微服务是大型架构的必经之路&#xff0c;也是大厂重点考察对象&#xff0c;下面我就重点详解4大主流微服务架构方案。 1、微服务聚合模式 微服务聚合设计模式&#xff0c;解决了如何从多个…

麒麟操作系统服务架构保姆级教程(十三)tomcat环境安装以及LNMT架构

如果你想拥有你从未拥有过的东西&#xff0c;那么你必须去做你从未做过的事情 之前咱们学习了LNMP架构&#xff0c;但是PHP对于技术来说确实是老掉牙了&#xff0c;PHP的市场占有量越来越少了&#xff0c;我认识一个10年的PHP开发工程师&#xff0c;十年工资从15k到今天的6k&am…

游戏AI,让AI 玩游戏有什么作用?

让 AI 玩游戏这件事远比我们想象的要早得多。追溯到 1948 年&#xff0c;图灵和同事钱伯恩共同设计了国际象棋程序 Turochamp。之所以设计这么个程序&#xff0c;图灵是想说明&#xff0c;机器理论上能模拟人脑能做的任何事情&#xff0c;包括下棋这样复杂的智力活动。 可惜的是…

Golang的文件处理优化策略

Golang的文件处理优化策略 一、Golang的文件处理优化策略概述 是一门效率高、易于编程的编程语言&#xff0c;它的文件处理能力也非常强大。 在实际开发中&#xff0c;需要注意一些优化策略&#xff0c;以提高文件处理的效率和性能。 本文将介绍Golang中的文件处理优化策略&…

数据结构学习记录-队列

队列的基本概念 1、队列是操作受限的线性表 2、队头&#xff1a;允许删除的一端 3、队尾&#xff1a;允许插入的一端 4、空队列&#xff1a;不含任何元素的空表 5、特点&#xff1a;先进先出、FIFO 6、应用场景&#xff1a; 栈&#xff1a;解决括号匹配&#xff1b;逆波…