Python实现推流直播
首先给出展示结果,大体就是检测工业板子是否出现。采取检测的方法比较简单,用的OpenCV的模板检测。
大体思路
- opencv读取视频
- 将视频分割为帧
- 对每一帧进行处理(opencv模板匹配)
- 在将此帧写入pipe管道
- 利用ffmpeg进行推流直播
中间遇到的问题
在处理本地视频时,并没有延时卡顿的情况。但对实时视频流的时候,出现了卡顿延时的效果。在一顿度娘操作之后,采取了多线程的方法。
opencv读取视频
def run_opencv_camera():video_stream_path = 0 # 当video_stream_path = 0 会开启计算机 默认摄像头 也可以为本地视频文件的路径cap = cv2.VideoCapture(video_stream_path)while cap.isOpened():is_opened, frame = cap.read()cv2.imshow('frame', frame)cv2.waitKey(1)cap.release()
OpenCV模板匹配
模板匹配就是在一幅图像中寻找一个特定目标的方法之一,这种方法的原理非常简单,遍历图像中每一个可能的位置,比较各处与模板是否相似,当相似度足够高时,就认为找到了目标。
def template_match(img_rgb):# 灰度转换img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY)# 模板匹配res = cv2.matchTemplate(img_gray, template, cv2.TM_CCOEFF_NORMED)# 设置阈值threshold = 0.8loc = np.where(res >= threshold)if len(loc[0]):# 这里直接固定区域cv2.rectangle(img_rgb, (155, 515), (1810, 820), (0, 0, 255), 3)cv2.putText(img_rgb, category, (240, 600), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)cv2.putText(img_rgb, Confidence, (240, 640), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)cv2.putText(img_rgb, Precision, (240, 680), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)cv2.putText(img_rgb, product_yield, (240, 720), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)cv2.putText(img_rgb, result, (240, 780), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 255, 0), 5)return img_rgb
FFmpeg推流
- 在Ubuntu 14 上安装 Nginx-RTMP 流媒体服务器
https://www.cnblogs.com/cocoajin/p/4353767.html
import subprocess as sprtmpUrl = ""
camera_path = ""
cap = cv.VideoCapture(camera_path)# Get video information
fps = int(cap.get(cv.CAP_PROP_FPS))
width = int(cap.get(cv.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv.CAP_PROP_FRAME_HEIGHT))# ffmpeg command
command = ['ffmpeg','-y','-f', 'rawvideo','-vcodec','rawvideo','-pix_fmt', 'bgr24','-s', "{}x{}".format(width, height),'-r', str(fps),'-i', '-','-c:v', 'libx264','-pix_fmt', 'yuv420p','-preset', 'ultrafast','-f', 'flv', rtmpUrl]# 管道配置
p = sp.Popen(command, stdin=sp.PIPE)# read webcamera
while(cap.isOpened()):ret, frame = cap.read()if not ret:print("Opening camera is failed")break# process frame# your code# process frame# write to pipep.stdin.write(frame.tostring())
- 说明:rtmp是要接受视频的服务器,服务器按照上面所给连接地址即可。
多线程处理
- python mutilprocessing多进程编程 https://blog.csdn.net/jeffery0207/article/details/82958520
def image_put(q):# 采取本地视频验证cap = cv2.VideoCapture("./new.mp4")# 采取视频流的方式# cap = cv2.VideoCapture(0)# cap.set(cv2.CAP_PROP_FRAME_WIDTH,1920)# cap.set(cv2.CAP_PROP_FRAME_HEIGHT,1080)if cap.isOpened():print('success')else:print('faild')while True:q.put(cap.read()[1])q.get() if q.qsize() > 1 else time.sleep(0.01)def image_get(q):while True:# start = time.time()#flag += 1frame = q.get()frame = template_match(frame)# end = time.time()# print("the time is", end-start)cv2.imshow("frame", frame)cv2.waitKey(0)# pipe.stdin.write(frame.tostring())#cv2.imwrite(save_path + "%d.jpg"%flag,frame)# 多线程执行一个摄像头
def run_single_camera():# 初始化mp.set_start_method(method='spawn') # init# 队列queue = mp.Queue(maxsize=2)processes = [mp.Process(target=image_put, args=(queue, )),mp.Process(target=image_get, args=(queue, ))][process.start() for process in processes][process.join() for process in processes]def run():run_single_camera() # quick, with 2 threadspass
- 说明:使用Python3自带的多线程模块mutilprocessing模块,创建一个队列,线程A从通过rstp协议从视频流中读取出每一帧,并放入队列中,线程B从队列中将图片取出,处理后进行显示。线程A如果发现队列里有两张图片,即线程B的读取速度跟不上线程A,那么线程A主动将队列里面的旧图片删掉,换新图片。
全部代码展示
import time
import multiprocessing as mp
import numpy as np
import random
import subprocess as sp
import cv2
import os
# 定义opencv所需的模板
template_path = "./high_img_template.jpg"# 定义矩形框所要展示的变量
category = "Category: board"var_confidence = (np.random.randint(86, 98)) / 100
Confidence = "Confidence: " + str(var_confidence)var_precision = round(random.uniform(98, 99), 2)
Precision = "Precision: " + str(var_precision) + "%"product_yield = "Product Yield: 100%"result = "Result: perfect"# 读取模板并获取模板的高度和宽度
template = cv2.imread(template_path, 0)
h, w = template.shape[:2]
# 定义模板匹配函数
def template_match(img_rgb):# 灰度转换img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY)# 模板匹配res = cv2.matchTemplate(img_gray, template, cv2.TM_CCOEFF_NORMED)# 设置阈值threshold = 0.8loc = np.where(res >= threshold)if len(loc[0]):# 这里直接固定区域cv2.rectangle(img_rgb, (155, 515), (1810, 820), (0, 0, 255), 3)cv2.putText(img_rgb, category, (240, 600), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)cv2.putText(img_rgb, Confidence, (240, 640), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)cv2.putText(img_rgb, Precision, (240, 680), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)cv2.putText(img_rgb, product_yield, (240, 720), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)cv2.putText(img_rgb, result, (240, 780), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 255, 0), 5)return img_rgb# 视频属性
size = (1920, 1080)
sizeStr = str(size[0]) + 'x' + str(size[1])
# fps = cap.get(cv2.CAP_PROP_FPS) # 30p/self
# fps = int(fps)
fps = 11
hz = int(1000.0 / fps)
print ('size:'+ sizeStr + ' fps:' + str(fps) + ' hz:' + str(hz))rtmpUrl = 'rtmp://localhost/hls/test'
# 直播管道输出
# ffmpeg推送rtmp 重点 : 通过管道 共享数据的方式
command = ['ffmpeg','-y','-f', 'rawvideo','-vcodec','rawvideo','-pix_fmt', 'bgr24','-s', sizeStr,'-r', str(fps),'-i', '-','-c:v', 'libx264','-pix_fmt', 'yuv420p','-preset', 'ultrafast','-f', 'flv',rtmpUrl]
#管道特性配置
# pipe = sp.Popen(command, stdout = sp.PIPE, bufsize=10**8)
pipe = sp.Popen(command, stdin=sp.PIPE) #,shell=False
# pipe.stdin.write(frame.tostring())def image_put(q):# 采取本地视频验证cap = cv2.VideoCapture("./new.mp4")# 采取视频流的方式# cap = cv2.VideoCapture(0)# cap.set(cv2.CAP_PROP_FRAME_WIDTH,1920)# cap.set(cv2.CAP_PROP_FRAME_HEIGHT,1080)if cap.isOpened():print('success')else:print('faild')while True:q.put(cap.read()[1])q.get() if q.qsize() > 1 else time.sleep(0.01)# 采取本地视频的方式保存图片
save_path = "./res_imgs"
if os.path.exists(save_path):os.makedir(save_path)def image_get(q):while True:# start = time.time()#flag += 1frame = q.get()frame = template_match(frame)# end = time.time()# print("the time is", end-start)cv2.imshow("frame", frame)cv2.waitKey(0)# pipe.stdin.write(frame.tostring())#cv2.imwrite(save_path + "%d.jpg"%flag,frame)# 多线程执行一个摄像头
def run_single_camera():# 初始化mp.set_start_method(method='spawn') # init# 队列queue = mp.Queue(maxsize=2)processes = [mp.Process(target=image_put, args=(queue, )),mp.Process(target=image_get, args=(queue, ))][process.start() for process in processes][process.join() for process in processes]def run():run_single_camera() # quick, with 2 threadspassif __name__ == '__main__':run()
参考文章
-
- 在Ubuntu 14 上安装 Nginx-RTMP 流媒体服务器:https://www.cnblogs.com/cocoajin/p/4353767.html
-
- python mutilprocessing多进程编程:https://blog.csdn.net/jeffery0207/article/details/82958520
-
- ffmpeg 将视频和图片互转化:https://blog.csdn.net/TingiBanDeQu/article/details/53896944
-
- 基于python2.7的opencv3.3-ffmpeg-rtmp视频处理并推送流直播:https://blog.csdn.net/u014303844/article/details/80394101
-
- 读取多个(海康\大华)网络摄像头的视频流 (使用opencv-python),解决实时读取延迟问题:https://zhuanlan.zhihu.com/p/38136322
-
- python利用ffmpeg进行rtmp推流直播:https://zhuanlan.zhihu.com/p/74260950