深度学习中Batch Normalization(BN)原理、作用浅析

最近做剪枝学习,其中一种是基于BN层的γ作为缩放因子进行剪枝的,那么我想搞懂BN的工作原理更好的理解网络、剪枝等,所以有了该文。

  • 首先先说BN的作用在详细拆解,理解。以知乎一条高赞评论说明BN层到底在干什么。
    在这里插入图片描述

Batch Norm 为什么有效

内部协变量偏移(Internal Covariate Shift)
  • 其反映的问题就是源域与目标域存在偏差。在深度神经网络的训练过程中,随着网络层数的增加,前一层输出的分布会发生变化,这种变化通常会使得下一层的输入分布发生偏移,导致训练过程中的梯度下降变得不稳定,从而影响模型的收敛速度和性能。这种现象被称为“内部协变量偏移”。

  • 内部协变量偏移,使得网络在训练时需要不断适应新的输入分布,这会消耗大量的计算资源并延长训练时间。而Batch Normalization(BN)层正是针对这一问题提出的解决方案。BN的核心思想是对每一层的输入进行归一化,使其均值为0,方差为1,从而减小输入数据的分布变化,使得网络在训练过程中能够更加稳定和高效地学习。

  • 这就是协变量偏移的问题 — 模型输入的数据与之前训练的数据分布非常不同 — 即使新数据仍然符合相同的目标函数。

损失和梯度平滑
  • 麻省理工学者质疑了解决协变量偏移是 Batch Norm 性能的原因的说法:论文
  • BN有效的本质原因在于其能够使优化空间optimization landscape变得平滑,其他的Normalization方法,例如L1,L2,L无穷大,也可以起到和BN一样的效果
  • 该论文提出,Batch Norm 所做的是通过改变网络权重的分布来大幅平滑损失情况。这意味着 gradient descent 可以自信地朝着某个方向迈出一步,因为它知道它不会在途中发现突然的中断。因此,它可以通过使用更大的学习率来采取更大的步骤。

Batch Normalization 的原理

BN 层的核心操作是在每一层的输入上进行归一化处理。具体来说,BN会对每一批次(mini-batch)的输入进行均值和方差的计算,然后使用这些统计量对输入进行归一化。归一化后的数据会被乘以一个可学习的缩放参数(gamma),并加上一个可学习的偏移参数(beta)。通过这种方式,BN不仅对输入进行了标准化处理,还通过学习到的参数对其进行了适当的尺度和位置调整,使得网络能够适应不同的数据分布。

数学上,BN操作可以表示为:
图片来自https://github.com/Captain1986/CaptainBlackboard/blob/master/D%230020-Batch-Normalization%E5%B1%82%E5%8E%9F%E7%90%86%E4%B8%8E%E5%88%86%E6%9E%90/D%230020.md
计算当前mini-batch所有样本的均值;计算当前mini-batch所有样本的方差;对当前mini-batch内每个样本用前面的均值和方差做归一化;对归一化后的样本,乘以一个缩放系数,再做一次平移;

  • 可学习缩放参数γ、可学习偏移参数β
    • 𝛾是一个缩放因子,它对标准化后的数据进行线性变换,控制了数据的尺度。通过学习网络能够自动调整每一层输出的方差大小,以适应不同的数据分布。𝛽这是一个偏移因子,它对标准化后的数据加上一个常数,控制了数据的均值。通过学习网络能够调整每一层输出的均值,使其更适合特定任务的需求
    • 参数由网络学习得到, 每个 Batch Norm 层都能够以最佳方式找到适合自己的最佳因子,因此可以移动和缩放归一化值以获得最佳预测
    • 对标准化后的数据进行缩放和偏移。这一步骤是在标准化之后进行的,目的是使得网络能够恢复标准化过程中可能丢失的特征,避免标准化导致模型表达能力的下降
    • 对一些重要的通道会学习到较大的γ值,不重要的通道会学到接近于0的γ值,我认为这可能是另一篇网络剪枝论文的理论基础。

Batch Norm 的作用

Batch Norm 帮助模型更快地收敛并加快训练速度。它使训练对权重的初始化方式和超参数的精确调整不太敏感。
Batch Norm 可以使用更高的学习率。如果没有 Batch Norm,学习率必须保持较小,以防止较大的异常值梯度影响梯度下降。Batch Norm 有助于减少这些异常值的影响。
Batch Norm还减少了梯度对初始权重值的依赖性。由于权重是随机初始化的,因此训练早期阶段的异常值权重值可能会扭曲梯度。因此,网络收敛需要更长的时间。Batch Norm 有助于抑制这些异常值的影响。
提高模型的泛化能力(正则化作用)在一定程度上起到了正则化的作用,减少了过拟合的风险。由于每一批次的统计量是基于当前批次数据计算的,这种变化引入了微小的噪声,有助于提高模型的泛化能力。
标准化输入数据,减少内部协方差偏移
BN通过使每一层的激活值在训练过程中保持稳定,避免了大幅度的梯度波动,从而提高了网络训练的稳定性。每一层的输入分布在训练过程中几乎不变,有助于减少训练过程中梯度的剧烈波动。

Batch Norm 何时不适用?

Batch Norm 不适用于较小的批量。这会导致每个小批量的均值和方差中出现过多的噪声。有人提出的Group Normalization等方法可以改善这些问题
Batch Norm 不用于循环网络。每个时间步之后的激活具有不同的分布,因此对其应用 Batch Norm 是不切实际的。但提出的Layer Normalization等方法也可以适用于循环网络

总结

本文主要参考了

  1. 部分内容翻译自Batch Norm Explained Visually — Why does it work?
  2. 部分图像来自BN原理分析

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/5516.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python----Python高级(正则表达式:语法规则,re库)

一、正则表达式 1.1、概念 正则表达式,又称规则表达式,(Regular Expression,在代码中常简写为regex、 regexp或RE),是一种文本模式,包括普通字符(例如,a 到 z 之间的字母&#xff0…

【16届蓝桥杯寒假刷题营】第1期DAY5

5.依依的询问最小值 - 蓝桥云课 问题描述 依依有个长度为 n 的序列 a,下标从 1 开始。 她有 m 次查询操作,每次她会查询下标区间在 [li​,ri​] 的 a 中元素和。她想知道你可以重新排序序列 a,使得这 m 次查询的总和最小。 求你求出 m 次…

机器学习10-解读CNN代码Pytorch版

机器学习10-解读CNN代码Pytorch版 我个人是Java程序员,关于Python代码的使用过程中的相关代码事项,在此进行记录 文章目录 机器学习10-解读CNN代码Pytorch版1-核心逻辑脉络2-参考网址3-解读CNN代码Pytorch版本1-MNIST数据集读取2-CNN网络的定义1-无注释版…

【机器学习实战中阶】使用SARIMAX,ARIMA预测比特币价格,时间序列预测

数据集说明 比特币价格预测(轻量级CSV)关于数据集 致谢 这些数据来自CoinMarketCap,并且可以免费使用该数据。 https://coinmarketcap.com/ 数据集:链接: 价格预测器 源代码与数据集 算法说明 SARIMAX(Seasonal AutoRegressive …

将 AzureBlob 的日志通过 Azure Event Hubs 发给 Elasticsearch(1.标准版)

问题 项目里使用了 AzureBlob 存储了用户上传的各种资源文件,近期 AzureBlob 的流量费用增长很快,想通过分析Blob的日志,获取一些可用的信息,所以有了这个需求:将存储账户的日志(读写,审计&…

【Red Hat8】:搭建FTP服务器

目录 一、匿名FTP访问 1、新建挂载文件 2、挂载 3、关闭防火墙 4、搭建yum源 5、安装VSFTPD 6、 打开配置文件 7、设置配置文件如下几个参数 8、重启vsftpd服务 9、进入图形化界面配置网络 10、查看IP地址 11、安装ftp服务 12、遇到拒绝连接 13、测试 二、本地…

Redis的Windows版本安装以及可视化工具

文章目录 redis安装redis安装包下载解压文件夹启动redis服务Redis路径配置环境变量打开redis客户端进行连接基础操作测试 redis可视化工具下载Redis Desktop Manager redis安装 redis安装包下载 windows版本readis下载:Releases tporadowski/redis 解压文件夹 我…

汽车钥匙发展史

介绍 最近在研究UWB数字钥匙的过程中,了解到汽车钥匙在短短的100多年以来的发展历程,让我不禁感慨科技的发展速度,本文主要介绍汽车发展过程中,车钥匙形态变化的历程及技术原理。 总体概述,汽车钥匙的发展&#xff0…

react install

react 安装 React 是一个用于构建用户界面的 JavaScript 库。以下是安装 React 的步骤: 使用 Create React App Create React App 是一个官方支持的命令行工具,用于快速搭建 React 应用。 安装 Node.js 和 npm 确保你的计算机上安装了 Node.js 和 npm…

Ubuntu如何安装redis服务?

环境: Ubuntu22.04 WSL2 问题描述: 如何安装redis服务? 解决方案: 1.在 Linux 上(如 Ubuntu/Debian)安装 1.通过包管理工具安装 Redis 服务器: sudo apt update sudo apt install redis…

element el-table合并单元格

合并 表格el-table添加方法:span-method"” <el-table v-loading"listLoading" :data"SHlist" ref"tableList" element-loading-text"Loading" border fit highlight-current-row :header-cell-style"headClass" …

【BUUCTF】[GXYCTF2019]BabySQli

进入页面如下 尝试万能密码注入 显示这个&#xff08;qyq&#xff09; 用burp suite抓包试试 发现注释处是某种编码像是base编码格式 MMZFM422K5HDASKDN5TVU3SKOZRFGQRRMMZFM6KJJBSG6WSYJJWESSCWPJNFQSTVLFLTC3CJIQYGOSTZKJ2VSVZRNRFHOPJ5 可以使用下面这个网页在线工具很方便…

R语言基础| 回归分析

写在前面 R语言拥有丰富的数据处理、统计分析和机器学习工具包&#xff0c;涵盖了从简单的描述统计到复杂的模型建立的各个方面。再加上数据的处理可以完美的衔接后续的可视化&#xff0c;这使得它成为处理各种类型和规模的数据集的理想选择。回归分析是统计学中一种用于探究自…

高并发内存池_CentralCache(中心缓存)和PageCache(页缓存)申请内存的设计

三、CentralCache&#xff08;中心缓存&#xff09;_内存设计 &#xff08;一&#xff09;Span的创建 // 页编号类型&#xff0c;32位下是4byte类型&#xff0c;64位下是8byte类型 // #ifdef _WIN64 typedef unsigned long long PageID; #else _WIN32 typedef size_t PageI…

【云网】云网络基础概念(华为云)

云网络基础概念&#xff08;华为云&#xff09; 一、虚拟网络 1、VPC概念 华为云提供的虚拟网络环境的基础单元是虚拟私有云&#xff08;Virtual Private Cloud&#xff09;。 VPC和传统的物理三层网络类似,也包括路由器、子网、子网网关、IP地址等传统概念。 典型组网逻辑…

WPF2-在xaml为对象的属性赋值

1. AttributeValue方式 1.1. 简单属性赋值1.2. 对象属性赋值 2. 属性标签的方式给属性赋值3. 标签扩展 (Markup Extensions) 3.1. StaticResource3.2. Binding 3.2.1. 普通 Binding3.2.2. ElementName Binding3.2.3. RelativeSource Binding3.2.4. StaticResource Binding (带参…

【经验分享】ARM Linux-RT内核实时系统性能评估工具

【经验分享】ARM Linux-RT内核实时系统性能评估工具 前言下载和编译方法常用工具介绍总结 前言 最近在研究Linux-RT实时系统&#xff0c;介绍下常用的实时系统的性能评估工具。 下载和编译方法 用git下载 git clone git://git.kernel.org/pub/scm/utils/rt-tests/rt-tests.…

基于 Spring Boot 和 Vue.js 的全栈购物平台开发实践

在现代 Web 开发中&#xff0c;前后端分离的架构已经成为主流。本文将分享如何使用 Spring Boot 和 Vue.js构建一个全栈购物平台&#xff0c;涵盖从后端 API 开发到前端页面实现的完整流程。 1. 技术栈介绍 后端技术栈 JDK 1.8&#xff1a;稳定且广泛使用的 Java 版本。 Spring…

ipad和macbook同步zotero文献附件失败的解决办法

背景&#xff1a;我所有的文献及其附件pdf都是在台式机&#xff08;windows系统&#xff09;&#xff0c;想要把这些文献同步到云上&#xff0c;然后再从云上同步到平板和其他笔记本电脑比如macbook。文献同步虽已成功&#xff0c;但文献附件都无法打开。 平板报错如下&#xf…

qml OpacityMask详解

1、概述 OpacityMask是QML&#xff08;Qt Meta-Object Language&#xff09;中的一种图形效果&#xff0c;它使用另一个项目&#xff08;通常是一个图像或图形项&#xff09;作为遮罩来控制源项目的透明度。这种效果允许开发者通过遮罩的alpha通道来精确地控制源项目中哪些部分…