玩转大语言模型——langchain调用ollama视觉多模态语言模型

系列文章目录

玩转大语言模型——ollama导入huggingface下载的模型
玩转大语言模型——langchain调用ollama视觉多模态语言模型


langchain调用ollama视觉多模态语言模型

  • 系列文章目录
  • 前言
  • 使用Ollama下载模型
    • 查找模型
    • 下载模型
  • 测试模型
    • ollama测试
    • langchain测试
      • 加载图片
      • 加载模型
    • 模型回复


前言

视觉多模态语言模型由预训练的多模态编码器、预训练的 LLM 以及连接两者的多模态接口等主要组件构成。将图像信息转换为可被语言模型处理的特征表示。拥有强大的视觉理解能力,能够准确理解图像内容,进行图像描述、视觉问答、图像定位等任务。可以与用户进行多轮交互,根据用户的文本和图像输入生成连贯、准确且有针对性的回答。本篇文章将介绍使用langchain调用ollama视觉多模态语音模型。


使用Ollama下载模型

查找模型

Ollama官网:https://ollama.com/
在这里插入图片描述
在Ollama官网上点击左上角的Models
在这里插入图片描述
选择Vision后就可以看到所有的支持视觉的模型了,在本篇文章中我们将使用llava模型进行演示,笔者也可以选择其他模型进行测试。LLaVA(Large Language and Vision Assistant)是一种多模态模型,它结合了视觉编码器和 Vicuna 以实现通用视觉和语言理解,在科学问答、数据分析和学术任务导向的视觉问答中表现出色,为研究人员提供了强大的工具。
在这里插入图片描述
左侧可以选择模型大小,模型越大一般来说效果越好,但针对测试来说7b的模型是够用的,为了兼容更多人的硬件设备,我们选用7b模型即可。右侧的就使用ollama下载模型的命令。

下载模型

打开命令行窗口,输入ollama下载模型的命令:ollama run llava,该命令会下载模型并直接执行,在初次下载成功后再执行命令不会重复下载。
执行命令后会先下载llava模型然后运行。如果想仅下载不运行,可以使用ollama pull llava
使用ollama run llava下载模型,可以直接与模型对话验证下载是否成功,如果使用的是ollama pull llava可以通过ollama list查看模型有没有被添加到列表,如果添加到列表,说明下载成功。
在这里插入图片描述


测试模型

ollama测试

下面我们用这样一张图片测试一下模型的性能。图片的路径在:D:/test_llava.png
在这里插入图片描述
打开命令行输入:ollama run llava,可以直接在提问时提出图片路径使用模型。
在这里插入图片描述
但是llava模型默认会使用英文回答,所以最好在询问的时候让模型用中文回答。从中文的回答上来看,回复内容是比较宽泛的描述,并且有可能会出错(羊驼被当作了斑羊)。这可能和模型或者模型大小有关,可以尝试其他模型测试一下,后期笔者也会写一篇相关的测试文章,请关注我的专栏。

langchain测试

加载图片

在langchain中使用视觉多模态语言模型时,图片应该是Base64编码的格式,下面介绍两种图片转Base64编码的方式。

从网络获取图片

import base64
import httpximage_url = "图片的网络链接"
image_base64 = base64.b64encode(httpx.get(image_url).content).decode("utf-8")

从本地获取图片
从本地获取图片并不能直接读取并转换Base64编码格式,在这里我们可以编写一个函数来解决。

import base64
from PIL import Image
import iodef image_to_base64(image_path):with Image.open(image_path) as img:buffer = io.BytesIO()img.save(buffer, format="PNG")img_bytes = buffer.getvalue()img_base64 = base64.b64encode(img_bytes).decode("utf-8")return img_base64local_image_path = "D:/test_llava.png"
image_base64 = image_to_base64(local_image_path)

在函数image_to_base64中,这里使用Image.open函数打开指定路径的图片文件。ImagePIL库中的类,open方法用于打开图片文件。with语句用于确保在使用完图片资源后,自动关闭文件,释放资源,避免资源泄漏。io.BytesIO是 Python 标准库io中的类,用于在内存中创建一个二进制流缓冲区。这个缓冲区将用于存储图片数据。将打开的图片img保存到之前创建的缓冲区buffer中后,使用getvalue方法用于获取缓冲区中的所有数据然后通过base64.b64encode函数用于对二进制数据img_bytes进行 Base64 编码,返回一个字节对象。然后使用decode("utf-8")方法将字节对象转换为 UTF-8 编码的字符串,得到最终的 Base64 编码的图片字符串。

加载模型

这里使用langchain中OpenAI接口和Ollama接口分别加载模型
首先下载langchain-openailangchain-ollama包,打开命令行,分别输入:

pip install -U langchain-openai
pip install -U langchain-ollama

OpenAI模型加载

from langchain_openai import ChatOpenAImodel = ChatOpenAI(temperature=0,model="llava:latest",openai_api_base="http://localhost:11434/v1/",openai_api_key="any key"
)

因为我们在本地使用ollama下载了llava模型了,所以openai_api_baseollama提供的URL:http://localhost:11434/v1/openai_api_key可以为任何值,但不能不传这个参数或者为空并且不能是中文。
Ollama模型加载

from langchain_ollama.chat_models import ChatOllamamodel = ChatOllama(model="llava:latest", temperature=0)

使用Ollama方式加载就更简单了,不过这种方式仍然可以访问远程的URL。下面给出例子

model = ChatOllama(model="llava:latest", base_url="http://localhost:11434/v1/", stream=True, temperature=0.6)

如果要访问其他地址的ollama的URL,修改base_url参数即可。

模型回复

from langchain_core.messages import HumanMessagemessage = HumanMessage(content=[{"type": "text", "text": "描述一下这幅图,用中文回答"},{"type": "image_url","image_url": {"url": f"data:image/jpeg;base64,{image_base64}"},},],
)
response = model.invoke([message])
print(response.content)

运行结果:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/576.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

3 前端: Web开发相关概念 、HTML语法、CSS语法

文章目录 前言:导学1 Web开发相关概念2 Web标准(网页标准)3 软件架构(CS/BS)(1)C/S: Client/Server 客户端 / 服务器端(2)B/S: Browser/Server 浏览器 / 服务器端VSCode配置前段开发环境一、HTML概念1 概念2 HTML快速入门(1)语法快速入门(2)VSCode一个 !(快捷键…

STM32如何测量运行的时钟频率

前言 环境: 芯片:STM32F103C8T6 Keil:V5.24.2.0 一、简介STM32F103C8T6的时钟源 ①HSI 内部高速时钟,RC振荡器,频率为8MHz,精度不高。②HSE 外部高速时钟,可接石英/陶瓷谐振器,频率范围为4MHz~16MHz&…

项目实战--网页五子棋(用户模块)(1)

接下来我将使用Java语言,和Spring框架,实现一个简单的网页五子棋。 主要功能包括用户登录注册,人机对战,在线匹配对局,房间邀请对局,积分排行版等。 这篇文件讲解用户模块的后端代码 1. 用户表与实体类 …

【HTML+CSS+JS+VUE】web前端教程-16-HTML5新增标签

扩展知识 div容器元素,也是页面中见到的最多的元素 div实现

Codeforces Round 995 (Div. 3)【题解】D ~ G

比赛地址传送门 D.Counting Pairs 注意到确定一个数后&#xff0c;第二个数可以一个范围内任选。故排序二分查找上下界后计数 #include <bits/stdc.h> #define int long long using namespace std; typedef pair<int, int> PII; const int N 4e5 10;int n, x, …

【Linux】Linux基础命令(二)

locate命令 locate命令可以用于快速查找文件的路径&#xff0c;比如我要查找所有.cpp文件的路径&#xff1a; sudo locate *.cppless 命令 less命令和more命令类似&#xff0c;都是查看文件内容&#xff0c;但less命令更强大 可以使用光标上下&#xff08;左右&#xff09;…

自动化构音障碍严重程度分类:基于声学特征与深度学习的研究 学习技术

自动化构音障碍严重程度分类 原文名称&#xff1a;Automated Dysarthria Severity Classification:A Study on Acoustic Features and Deep Learning Techniques 摘要 本文比较了不同深度学习技术和声学特征在构音障碍严重程度分类中的应用。研究评估了深度神经网络&#xff0…

【NLP】ELMO、GPT、BERT、BART模型解读及对比分析

文章目录 一、基础知识1.1 Word Embedding&#xff08;词嵌入&#xff09;1.2 词嵌入模型1.3 神经网络语言模型NNLM 二、ELMO2.1 ELMO的提出2.2 ELMO核心思想2.3 ELMO的优缺点 三、GPT3.1 Transformer3.2 GPT简介3.3 GPT模型架构3.4 预训练及微调3.5 GPT和ELMO对比 四、BERT4.1…

EasyExcel(二)导出Excel表自动换行和样式设置

EasyExcel(一)导出Excel表列宽自适应 背景 在上一篇文章中解决导出列宽自适应,然后也解决了导出列宽不可超过255的问题。但是实际应用场景中仍然会有导出数据的长度超过列宽255。这时导出效果就会出现如下现象: 多出列宽宽度的内容会浮出来,影响后边列数据的显示。 解决…

【深度学习】多目标融合算法(二):底部共享多任务模型(Shared-Bottom Multi-task Model)

目录 一、引言 1.1 往期回顾 1.2 本期概要 二、Shared-Bottom Multi-task Model&#xff08;SBMM&#xff09; 2.1 技术原理 2.2 技术优缺点 2.3 业务代码实践 三、总结 一、引言 在朴素的深度学习ctr预估模型中&#xff08;如DNN&#xff09;&#xff0c;通常以一个行…

分类模型为什么使用交叉熵作为损失函数

推导过程 让推理更有体感&#xff0c;进行下面假设&#xff1a; 假设要对猫、狗进行图片识别分类假设模型输出 y y y&#xff0c;是一个几率&#xff0c;表示是猫的概率 训练资料如下&#xff1a; x n x^n xn类别 y ^ n \widehat{y}^n y ​n x 1 x^1 x1猫1 x 2 x^2 x2猫1 x …

快速导入请求到postman

1.确定请求&#xff0c;右键复制为cURL(bash) 2.postman菜单栏Import-Raw text&#xff0c;粘贴复制的内容保存&#xff0c;请求添加成功

第432场周赛:跳过交替单元格的之字形遍历、机器人可以获得的最大金币数、图的最大边权的最小值、统计 K 次操作以内得到非递减子数组的数目

Q1、跳过交替单元格的之字形遍历 1、题目描述 给你一个 m x n 的二维数组 grid&#xff0c;数组由 正整数 组成。 你的任务是以 之字形 遍历 grid&#xff0c;同时跳过每个 交替 的单元格。 之字形遍历的定义如下&#xff1a; 从左上角的单元格 (0, 0) 开始。在当前行中向…

专题 - STM32

基础 基础知识 STM所有产品线&#xff08;列举型号&#xff09;&#xff1a; STM产品的3内核架构&#xff08;列举ARM芯片架构&#xff09;&#xff1a; STM32的3开发方式&#xff1a; STM32的5开发工具和套件&#xff1a; 若要在电脑上直接硬件级调试STM32设备&#xff0c;则…

基于Django的个性化餐饮管理系统

系统展示 用户前台界面 管理员后台界面 系统背景 该系统的研发对于餐饮行业具有重要意义。首先&#xff0c;通过个性化餐饮管理系统的应用&#xff0c;餐饮企业能够精准把握顾客需求&#xff0c;提供定制化服务&#xff0c;从而增强顾客粘性&#xff0c;提升顾客满意度。其次&a…

scala代码打包配置(maven)

目录 mavenpom.xml打包配置项&#xff08;非完整版&#xff0c;仅含打包的内容< build>&#xff09;pom.xml完整示例&#xff08;需要修改参数&#xff09;效果说明 maven 最主要的方式还是maven进行打包&#xff0c;也好进行配置项的管理 以下为pom文件&#xff08;不要…

plane开源的自托管项目

Plane 是一个开源的自托管项目规划解决方案&#xff0c;专注于问题管理、里程碑跟踪以及产品路线图的设计。作为一款开源软件&#xff0c;Plane 的代码托管在 GitHub 平台上&#xff0c;允许任何人查看和贡献代码。它为用户提供了便捷的项目创建与管理手段&#xff0c;并配备了…

wireshark排除私接小路由

1.wireshark打开&#xff0c;发现了可疑地址&#xff0c;合法的地址段DHCP是192.168.100.0段的&#xff0c;打开后查看发现可疑地址段&#xff0c;分别是&#xff0c;192.168.0.1 192.168.1.174 192.168.1.1。查找到它对应的MAC地址。 ip.src192.168.1.1 2.通过show fdb p…

Elasticsearch:使用 Playground 与你的 PDF 聊天

LLMs作者&#xff1a;来自 Elastic Toms Mura 了解如何将 PDF 文件上传到 Kibana 并使用 Elastic Playground 与它们交互。本博客展示了在 Playground 中与 PDF 聊天的实用示例。 Elasticsearch 8.16 具有一项新功能&#xff0c;可让你将 PDF 文件直接上传到 Kibana 并使用 Pla…

【C++】深入理解string相关函数:实现和分析

博客主页&#xff1a; [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: C 文章目录 &#x1f4af;前言&#x1f4af;1. 使用 stoi 和 stol 函数1.1 stoi 和 stol 的基本概述参数说明进制支持示例代码与解析运行结果解析 异常处理 &#x1f4af;2. 使用 stod 和 stof 函数2.1 stod 和 stof …