神经网络层数越多越好吗,神经网络的层数怎么看

神经网络的隐含层节点数怎么设置啊?比如要设置18层隐含节点数!跪求,工作急用!

隐层一般是一层或两层,很少会采用三层以上,至少隐层的节点数确定,一般有以下几种方法:1、有经验的人员根据以往的经验凑试出节点个数。

2、某些学术研究出固定的求节点方法,如2m+1个隐层节点,m为输入个数。3、修剪法。刚开始建立足够多的节点数,在训练过程中,根据节点数的相关程度,删除重复的节点。

谷歌人工智能写作项目:神经网络伪原创

小波神经网络的建模怎么确定隐含层的神经元个数

确定隐层节点数的方法为“试凑法”写作猫。隐含神经元的数目是非常重要的,它的选取结果直接影响到网络的性能好坏。

如果隐含层的神经元数量太少,网络就不能够很好的学习,即便可以学习,需要训练的次数也非常多,训练的精度也不高。

当隐含层神经元的数目在一个合理的范围内时,增加神经元的个数可以提高网络训练的精度,还可能会降低训练的次数。

但是,当超过这一范围后,如果继续增加神经元的数量,网络训练的时间又会增加,甚至还有可能引起其它的问题。

那么,究竟要选择多少个隐含层神经元才合适呢?遗憾的是,至今为止还没有理论规定该如何来确定网络隐含层的数目。所以,只能用尝试的方法来寻找最适宜的隐含层神经元数目。

本文采取的做法是:构建多个BP网络,它们除了隐含层神经元个数不同外,其它一切条件都相同,通过比较它们训练的循环次数和网络精度,找到最佳的神经元个数。小波神经网络的隐层设计原则也遵循这个方法。

也有一些经验公式,可以作为参考。

word2vec神经网络层次选择多少

一般认为,增加隐层数可以降低网络误差(也有文献认为不一定能有效降低),提高精度,但也使网络复杂化,从而增加了网络的训练时间和出现“过拟合”的倾向。

一般来讲应设计神经网络应优先考虑3层网络(即有1个隐层)。一般地,靠增加隐层节点数来...。

用matlab建立人工神经网络,如何选择网络的层数,以及每层的网络节点,有没有规则? 50

仅含一个隐层的神经网络就可以任意逼近一个非线性函数,所以可以选择只有一个隐层的。但隐层节点数并没有规则,你可以采用试凑法。这几个隐层节点的公式你可以参考这几个公式。

m=(n+l+a)开根号;m=log(2的n次方);m=(nl)开根号。其中,m为隐层节点数。n为输入层节点数,l为输出层节点数。a为1—10之间的常数。

如果有问题,我们可以探讨下,我现在也在有关这方面的预测。QQ:709791871。

matlab GUI中神经网络层数设置的问题

matlab中怎样修改神经网络的层数或者节点数

神经网络是不是层数越多越好?

1、神经网络算法隐含层的选取1.1构造法首先运用三种确定隐含层层数的方法得到三个隐含层层数,找到最小值和最大值,然后从最小值开始逐个验证模型预测误差,直到达到最大值。

最后选取模型误差最小的那个隐含层层数。该方法适用于双隐含层网络。1.2删除法单隐含层网络非线性映射能力较弱,相同问题,为达到预定映射关系,隐层节点要多一些,以增加网络的可调参数,故适合运用删除法。

1.3黄金分割法算法的主要思想:首先在[a,b]内寻找理想的隐含层节点数,这样就充分保证了网络的逼近能力和泛化能力。

为满足高精度逼近的要求,再按照黄金分割原理拓展搜索区间,即得到区间[b,c](其中b=0.619*(c-a)+a),在区间[b,c]中搜索最优,则得到逼近能力更强的隐含层节点数,在实际应用根据要求,从中选取其一即可。

BP算法中,权值和阈值是每训练一次,调整一次。逐步试验得到隐层节点数就是先设置一个初始值,然后在这个值的基础上逐渐增加,比较每次网络的预测性能,选择性能最好的对应的节点数作为隐含层神经元节点数。

设计神经网络时为什么趋向于选择更深的网络结构

一隐层数一般认为,增加隐层数可以降低网络误差(也有文献认为不一定能有效降低),提高精度,但也使网络复杂化,从而增加了网络的训练时间和出现“过拟合”的倾向。

一般来讲应设计神经网络应优先考虑3层网络(即有1个隐层)。一般地,靠增加隐层节点数来获得较低的误差,其训练效果要比增加隐层数更容易实现。

对于没有隐层的神经网络模型,实际上就是一个线性或非线性(取决于输出层采用线性或非线性转换函数型式)回归模型。

因此,一般认为,应将不含隐层的网络模型归入回归分析中,技术已很成熟,没有必要在神经网络理论中再讨论之。

二隐层节点数在BP网络中,隐层节点数的选择非常重要,它不仅对建立的神经网络模型的性能影响很大,而且是训练时出现“过拟合”的直接原因,但是目前理论上还没有一种科学的和普遍的确定方法。

目前多数文献中提出的确定隐层节点数的计算公式都是针对训练样本任意多的情况,而且多数是针对最不利的情况,一般工程实践中很难满足,不宜采用。事实上,各种计算公式得到的隐层节点数有时相差几倍甚至上百倍。

为尽可能避免训练时出现“过拟合”现象,保证足够高的网络性能和泛化能力,确定隐层节点数的最基本原则是:在满足精度要求的前提下取尽可能紧凑的结构,即取尽可能少的隐层节点数。

研究表明,隐层节点数不仅与输入/输出层的节点数有关,更与需解决的问题的复杂程度和转换函数的型式以及样本数据的特性等因素有关。

在确定隐层节点数时必须满足下列条件:(1)隐层节点数必须小于N-1(其中N为训练样本数),否则,网络模型的系统误差与训练样本的特性无关而趋于零,即建立的网络模型没有泛化能力,也没有任何实用价值。

同理可推得:输入层的节点数(变量数)必须小于N-1。(2)训练样本数必须多于网络模型的连接权数,一般为2~10倍,否则,样本必须分成几部分并采用“轮流训练”的方法才可能得到可靠的神经网络模型。

总之,若隐层节点数太少,网络可能根本不能训练或网络性能很差;若隐层节点数太多,虽然可使网络的系统误差减小,但一方面使网络训练时间延长,另一方面,训练容易陷入局部极小点而得不到最优点,也是训练时出现“过拟合”的内在原因。

因此,合理隐层节点数应在综合考虑网络结构复杂程度和误差大小的情况下用节点删除法和扩张法确定。

matlab 神经网络怎么确定隐含层的层数及个传递函数

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/58494.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

华为最新大模型来了!盘古3.0问世,千亿参数规模3万亿tokens,放话「不作诗只做事」

来源 | 量子位 | 公众号 QbitAI 终于,华为的大模型动向来了! 盘古大模型3.0,今天正式发布。 最底层的基础大模型包括100亿参数、380亿参数、710亿参数和1000亿参数四个版本,预训练使用了超3万亿tokens。 但和早先的传言不同&am…

Nat Biotechnol -- 生成式AI进军更高效价抗体

类似于ChatGPT的语言模型已被应用于改进针对COVID-19、埃博拉和其他病毒的抗体疗法。 代码看不懂?ChatGPT 帮你解释,详细到爆! 单克隆抗体(Y形)与SARS-CoV-2病毒纤突蛋白(红色)上的结合位点&…

什么是科技大爆炸?2023年星云虚境绝对是AI人工智能行业大拿

什么是科技大爆炸?2023年绝对是AI人工智能发展最爆发那一年,自从315chatgpt发布,你看看一夜之间市面上出来了多少的AI工具,在普通人还在嘲笑现在的AI是个智障的时候,聪明的人已经使用这些工具极大的提高自己的生产力了…

华为最新大模型来了!盘古3.0问世,千亿参数规模3万亿tokens,放话「不作诗只做事」...

明敏 发自 东莞量子位 | 公众号 QbitAI 终于,华为的大模型动向来了! 盘古大模型3.0,今天正式发布。 最底层的基础大模型包括100亿参数、380亿参数、710亿参数和1000亿参数四个版本,预训练使用了超3万亿tokens。 但和早先的传言不同…

Unity实现简单卡牌游戏框架

Unity卡牌游戏教程(一)简单框架 前言 项目的初衷是以项目形式串起unity各种零散知识,语言风格较详细(啰嗦) 需求 先来看需要实现什么东西 构建卡牌对象 简单的UI系统 UI和场景的简单交互 前期准备 打开unity&…

卡牌游戏算法原理、代码

1、原理 卡片游戏算法桌上有一叠牌,从第一张牌(即位于顶面的牌)开始从上往下依次编号为1~n。当至少还剩两张牌时进行一下操作:把第一张牌扔掉,然后把第二张牌放到整叠牌的最后,以此往复。输入卡牌数量n&am…

Unity制作卡牌游戏

我的第一个unity项目是卡牌游戏,是看着慕课网以及用同学分享的项目资源跟着老师做的。慕课网课程的链接,希望老师允许我把课程的链接放在这里,宁静方致远 分享的项目,内含素材,希望他们可以同意把他们的链接放在这里。…

百度搜索框搜索时显示或者隐藏历史搜索记录

1.首先进入百度首页 2.找到设置下的搜索设置,如下图所示 3.点击“搜索设置”会出现如下图的弹框,有搜索历史记录的设置,“显示”或者“不显示”。

在谷歌搜索框内不显示搜索记录

在谷歌搜索框内不显示搜索记录 在不删除谷歌历史浏览记录的前提下,不主动显示浏览记录。 操作步骤如上图所示,在数据与个性化中找到网络与应用活动记录,点进去,然后关闭 推荐用edge,可以轻松切换用户,管理…

google 输入栏不显示历史搜索记录方法

网上看了很多回答,试了都不起作用。这里记录一下我的方法,供大家参考。 第一步:在google输入栏输入:chrome://version 查看浏览器信息。其中有个个人资料路径 第二步:在文件夹中找到该路径,路径下有个His…

企业数据分析分四步走:描述、诊断、预测、指导

谈到数据,大家都喜欢拿大数据说事儿,精准营销、客户管理、企业洞察,但事实上,对于大部分中小型企业来说,把创立至今多少年来各个渠道积攒下来的数据统合到一起,也仅仅只是小数据而已。 这些数据,选用合适的工具,可以非常轻松的管好。不过,在选工具之前可以先问自己这…

什么是RLHF

什么是RLHF? **字面翻译:**RLHF (Reinforcement Learning from Human Feedback) ,即以强化学习方式依据人类反馈优化语言模型。 强化学习从人类反馈(RLHF)是一种先进的AI系统训练方法,它将强化学习与人类…

ChatGPT,我跟不动了,你呢?

周末扒出来一个 10 多年前的老系统,搁现在绝对得老破旧一个,如果要升级改造,绝对不如重写速度快。打开编辑器,从 JSP 翻到 XML 配置文件,基本还算看得懂,不过还是太久远了,把玩起来难度比较大。…

chatgpt赋能python:用Python开发软件的步骤

用 Python 开发软件的步骤 Python 是一种广泛使用的编程语言,因其灵活性、易读性以及可扩展性而备受推崇。Python 也有许多应用场景。在本文中,我们将重点介绍使用 Python 开发软件的基本步骤,帮助初学者入门。 第一步:确定需求…

关于在手机端可以看到加入的百度网盘群,在pc段找不到的原因

1.应该有人和我遇到过一样的问题,在手机上加入的百度网盘群,一直都存在,而在电脑端的时候,有时候登陆会显示出群,有时候却找不到,遇到群友分享的学习资料下载下来却找不到路,你说气不气。为了让…

盖茨笔记:人工智能时代已经开始

来源:比尔盖茨 In my lifetime, I’ve seen two demonstrations of technology that struck me as revolutionary. 我平生见识过两次令我印象深刻、革命性的技术演示。 The first time was in 1980, when I was introduced to a graphical user interface—the fore…

人工智能时代已经开始

In my lifetime, I’ve seen two demonstrations of technology that struck me as revolutionary. 我平生见识过两次令我印象深刻、革命性的技术演示。 The first time was in 1980, when I was introduced to a graphical user interface—the forerunner of every modern op…

警惕GPT对个人电脑中文件的读取!!!

最近在使用chatgpt帮忙写代码时,出现了不可思议的一幕,有可能是是我的见识太浅薄。 由于和gpt对话时,用的多了以后,我的提问方式变得比较简洁,想不到GPT并没有给我代码,而是让我告诉他数据的路径和对应的列…

【工具】1744- Claude2:GPT4 强劲竞争对手来了,完全免费!

关注 “AI 工具派” 探索最新 AI 工具,发现 AI 带来的无限可能性! 「近期热门」 AI Colors:轻松定制你的网页配色方案Albus:探索你的无限创意PMAI:优秀的产品经理 AI 帮手Forefront Chat:免费的 GPT-4 聊天…

照片生成漫画头像的软件,试试这个方法很好用

相信很多朋友都喜欢看动漫或者漫画吧,有时候遇到喜欢的人物有没有过把自己代入漫画里呢?我倒是有过,想象自己在漫画里是什么样子,但是如果想把照片变成漫画效果,找画师的话既费时又费钱。其实只要使用把照片生成漫画的…