神经网络的隐含层节点数怎么设置啊?比如要设置18层隐含节点数!跪求,工作急用!
隐层一般是一层或两层,很少会采用三层以上,至少隐层的节点数确定,一般有以下几种方法:1、有经验的人员根据以往的经验凑试出节点个数。
2、某些学术研究出固定的求节点方法,如2m+1个隐层节点,m为输入个数。3、修剪法。刚开始建立足够多的节点数,在训练过程中,根据节点数的相关程度,删除重复的节点。
谷歌人工智能写作项目:神经网络伪原创
小波神经网络的建模怎么确定隐含层的神经元个数
确定隐层节点数的方法为“试凑法”写作猫。隐含神经元的数目是非常重要的,它的选取结果直接影响到网络的性能好坏。
如果隐含层的神经元数量太少,网络就不能够很好的学习,即便可以学习,需要训练的次数也非常多,训练的精度也不高。
当隐含层神经元的数目在一个合理的范围内时,增加神经元的个数可以提高网络训练的精度,还可能会降低训练的次数。
但是,当超过这一范围后,如果继续增加神经元的数量,网络训练的时间又会增加,甚至还有可能引起其它的问题。
那么,究竟要选择多少个隐含层神经元才合适呢?遗憾的是,至今为止还没有理论规定该如何来确定网络隐含层的数目。所以,只能用尝试的方法来寻找最适宜的隐含层神经元数目。
本文采取的做法是:构建多个BP网络,它们除了隐含层神经元个数不同外,其它一切条件都相同,通过比较它们训练的循环次数和网络精度,找到最佳的神经元个数。小波神经网络的隐层设计原则也遵循这个方法。
也有一些经验公式,可以作为参考。
word2vec神经网络层次选择多少
一般认为,增加隐层数可以降低网络误差(也有文献认为不一定能有效降低),提高精度,但也使网络复杂化,从而增加了网络的训练时间和出现“过拟合”的倾向。
一般来讲应设计神经网络应优先考虑3层网络(即有1个隐层)。一般地,靠增加隐层节点数来...。
用matlab建立人工神经网络,如何选择网络的层数,以及每层的网络节点,有没有规则? 50
仅含一个隐层的神经网络就可以任意逼近一个非线性函数,所以可以选择只有一个隐层的。但隐层节点数并没有规则,你可以采用试凑法。这几个隐层节点的公式你可以参考这几个公式。
m=(n+l+a)开根号;m=log(2的n次方);m=(nl)开根号。其中,m为隐层节点数。n为输入层节点数,l为输出层节点数。a为1—10之间的常数。
如果有问题,我们可以探讨下,我现在也在有关这方面的预测。QQ:709791871。
matlab GUI中神经网络层数设置的问题
matlab中怎样修改神经网络的层数或者节点数
神经网络是不是层数越多越好?
1、神经网络算法隐含层的选取1.1构造法首先运用三种确定隐含层层数的方法得到三个隐含层层数,找到最小值和最大值,然后从最小值开始逐个验证模型预测误差,直到达到最大值。
最后选取模型误差最小的那个隐含层层数。该方法适用于双隐含层网络。1.2删除法单隐含层网络非线性映射能力较弱,相同问题,为达到预定映射关系,隐层节点要多一些,以增加网络的可调参数,故适合运用删除法。
1.3黄金分割法算法的主要思想:首先在[a,b]内寻找理想的隐含层节点数,这样就充分保证了网络的逼近能力和泛化能力。
为满足高精度逼近的要求,再按照黄金分割原理拓展搜索区间,即得到区间[b,c](其中b=0.619*(c-a)+a),在区间[b,c]中搜索最优,则得到逼近能力更强的隐含层节点数,在实际应用根据要求,从中选取其一即可。
BP算法中,权值和阈值是每训练一次,调整一次。逐步试验得到隐层节点数就是先设置一个初始值,然后在这个值的基础上逐渐增加,比较每次网络的预测性能,选择性能最好的对应的节点数作为隐含层神经元节点数。
设计神经网络时为什么趋向于选择更深的网络结构
一隐层数一般认为,增加隐层数可以降低网络误差(也有文献认为不一定能有效降低),提高精度,但也使网络复杂化,从而增加了网络的训练时间和出现“过拟合”的倾向。
一般来讲应设计神经网络应优先考虑3层网络(即有1个隐层)。一般地,靠增加隐层节点数来获得较低的误差,其训练效果要比增加隐层数更容易实现。
对于没有隐层的神经网络模型,实际上就是一个线性或非线性(取决于输出层采用线性或非线性转换函数型式)回归模型。
因此,一般认为,应将不含隐层的网络模型归入回归分析中,技术已很成熟,没有必要在神经网络理论中再讨论之。
二隐层节点数在BP网络中,隐层节点数的选择非常重要,它不仅对建立的神经网络模型的性能影响很大,而且是训练时出现“过拟合”的直接原因,但是目前理论上还没有一种科学的和普遍的确定方法。
目前多数文献中提出的确定隐层节点数的计算公式都是针对训练样本任意多的情况,而且多数是针对最不利的情况,一般工程实践中很难满足,不宜采用。事实上,各种计算公式得到的隐层节点数有时相差几倍甚至上百倍。
为尽可能避免训练时出现“过拟合”现象,保证足够高的网络性能和泛化能力,确定隐层节点数的最基本原则是:在满足精度要求的前提下取尽可能紧凑的结构,即取尽可能少的隐层节点数。
研究表明,隐层节点数不仅与输入/输出层的节点数有关,更与需解决的问题的复杂程度和转换函数的型式以及样本数据的特性等因素有关。
在确定隐层节点数时必须满足下列条件:(1)隐层节点数必须小于N-1(其中N为训练样本数),否则,网络模型的系统误差与训练样本的特性无关而趋于零,即建立的网络模型没有泛化能力,也没有任何实用价值。
同理可推得:输入层的节点数(变量数)必须小于N-1。(2)训练样本数必须多于网络模型的连接权数,一般为2~10倍,否则,样本必须分成几部分并采用“轮流训练”的方法才可能得到可靠的神经网络模型。
总之,若隐层节点数太少,网络可能根本不能训练或网络性能很差;若隐层节点数太多,虽然可使网络的系统误差减小,但一方面使网络训练时间延长,另一方面,训练容易陷入局部极小点而得不到最优点,也是训练时出现“过拟合”的内在原因。
因此,合理隐层节点数应在综合考虑网络结构复杂程度和误差大小的情况下用节点删除法和扩张法确定。
matlab 神经网络怎么确定隐含层的层数及个传递函数