1、MySQL 数据库
1.1、建表规约
1) 表达是与否概念的字段,必须使用 is_xxx 的方式命名,数据类型是 unsigned tinyint(1 表示是,0 表示否)。
说明:任何字段如果为非负数,必须是 unsigned。
注意:POJO 类中的任何布尔类型的变量,都不要加 is 前缀,所以,需要在设置从 is_xxx 到 Xxx 的映射关系。数据库表示是与否的值,使用 tinyint 类型,坚持 is_xxx 的命名方式是为了明确其取值含义与取值范围。
正例:表达逻辑删除的字段名 is_deleted,1 表示删除,0 表示未删除。
2) 表名、字段名必须使用小写字母或数字,禁止出现数字开头,禁止两个下划线中间只出现数字。数据库字段名的修改代价很大,因为无法进行预发布,所以字段名称需要慎重考虑。
说明:MySQL 在 Windows 下不区分大小写,但在 Linux 下默认是区分大小写。因此,数据库名、表名、字段名,都不允许出现任何大写字母,避免节外生枝。
正例:aliyun_admin,rdc_config,level3_name
反例:AliyunAdmin,rdcConfig,level_3_name
3) 表名不使用复数名词。
说明:表名应该仅仅表示表里面的实体内容,不应该表示实体数量,对应于 DO 类名也是单数形式,符合表达习惯。
4) 禁用保留字,如 desc、range、match、delayed 等,请参考 MySQL 官方保留字。
5) 主键索引名为 pk_字段名;唯一索引名为 uk_字段名;普通索引名则为 idx_字段名。
说明:pk_ 即 primary key;uk_ 即 unique key;idx_ 即 index 的简称。
6) 小数类型为 decimal,禁止使用 float 和 double。
说明:在存储的时候,float 和 double 都存在精度损失的问题,很可能在比较值的时候,得到不正确的结果。如果存储的数据范围超过 decimal 的范围,建议将数据拆成整数和小数并分开存储。
7)【强制】如果存储的字符串长度几乎相等,使用 char 定长字符串类型。
8)【强制】varchar 是可变长字符串,不预先分配存储空间,长度不要超过 5000,如果存储长度大于此值,定义字段类型为 text,独立出来一张表,用主键来对应,避免影响其它字段索引效率。
9)【强制】表必备三字段:id, create_time, update_time。
说明:其中 id 必为主键,类型为 bigint unsigned、单表时自增、步长为 1。create_time, update_time 的类型均为 datetime 类型。
10)【推荐】表的命名最好是遵循“业务名称_表的作用”。
正例:alipay_task / force_project / trade_config
11) 【推荐】库名与应用名称尽量一致。
12) 【推荐】如果修改字段含义或对字段表示的状态追加时,需要及时更新字段注释。
13)【推荐】字段允许适当冗余,以提高查询性能,但必须考虑数据一致。冗余字段应遵循:
不是频繁修改的字段。
不是 varchar 超长字段,更不能是 text 字段。
不是唯一索引的字段。
正例:商品类目名称使用频率高,字段长度短,名称基本一不变,可在相关联的表中冗余存储类目名称,避免关联查询。
14)【推荐】单表行数超过 500 万行或者单表容量超过 2GB,才推荐进行分库分表。
说明:如果预计三年后的数据量根本达不到这个级别,请不要在创建表时就分库分表。
15)【参考】合适的字符存储长度,不但节约数据库表空间、节约索引存储,更重要的是提升检索速度。
正例:如下表,其中无符号值可以避免误存负数,且扩大了表示范围。对象 年龄区间 类型 字节 表示范围
人 150 岁之内 tinyint unsigned 1 无符号值:0 到 255
龟 数百岁 smallint unsigned 2 无符号值:0 到 65535
恐龙化石 数千万年 int unsigned 4 无符号值:0 到约 42.9 亿
太阳 约 50 亿年 bigint unsigned 8 无符号值:0 到约 10 的 19 次方
1.2、索引规约
1)【强制】业务上具有唯一特性的字段,即使是多个字段的组合,也必须建成唯一索引。
说明:不要以为唯一索引影响了 insert 速度,这个速度损耗可以忽略,但提高查找速度是明显的;另外,即使在应用层做了非常完善的校验控制,只要没有唯一索引,根据墨菲定律,必然有脏数据产生。
2)【强制】超过三个表禁止 join。需要 join 的字段,数据类型必须绝对一致;多表关联查询时,保证被关联的字段需要有索引。
说明:即使双表 join 也要注意表索引、SQL 性能。
1.3、SQL 语句
1)【强制】不要使用 count(列名)或 count(常量)来替代 count(),count()是 SQL92 定义的标准统计行数的语法,跟数据库无关,跟 NULL 和非 NULL 无关。
说明:count(*)会统计值为 NULL 的行,而 count(列名)不会统计此列为 NULL 值的行。
2)【强制】count(distinct col) 计算该列除 NULL 之外的不重复行数,注意 count(distinct col1, col2) 如果其中一列全为 NULL,那么即使另一列有不同的值,也返回为 0。
3)【强制】当某一列的值全是 NULL 时,count(col)的返回结果为 0,但 sum(col)的返回结果为 NULL,因此使用 sum()时需注意 NPE 问题。
正例:使用如下方式来避免 sum 的 NPE 问题:SELECT IFNULL(SUM(column), 0) FROM table;
4)【强制】使用 ISNULL()来判断是否为 NULL 值。
说明:NULL 与任何值的直接比较都为 NULL。
NULL<>NULL 的返回结果是 NULL,而不是 false。
NULL=NULL 的返回结果是 NULL,而不是 true。
NULL<>1 的返回结果是 NULL,而不是 true。
5)【强制】代码中写分页查询逻辑时,若 count 为 0 应直接返回,避免执行后面的分页语句。
6)【强制】不得使用外键与级联,一切外键概念必须在应用层解决。
说明:以学生和成绩的关系为例,学生表中的 student_id 是主键,那么成绩表中的 student_id 则为外键。如果更新学生表中的 student_id,同时触发成绩表中的 student_id 更新,即为级联更新。外键与级联更新适用于单机低并发,不适合分布式、高并发集群;级联更新是强阻塞,存在数据库更新风暴的风险;外键影响数据库的插入速度。
7)【强制】禁止使用存储过程,存储过程难以调试和扩展,更没有移植性。
8)【强制】数据订正(特别是删除、修改记录操作)时,要先 select,避免出现误删除,确认无误才能执行更新语句。
9)【推荐】in 操作能避免则避免,若实在避免不了,需要仔细评估 in 后边的集合元素数量,控制在 1000 个之内。
10)【参考】如果有国际化需要,所有的字符存储与表示,均以 utf-8 编码,注意字符统计函数的区别。
说明:
SELECT LENGTH("轻松工作"); 返回为 12
SELECT CHARACTER_LENGTH("轻松工作"); 返回为 4
如果需要存储表情,那么选择 utf8mb4 来进行存储,注意它与 utf-8 编码的区别。
11)【参考】TRUNCATE TABLE 比 DELETE 速度快,且使用的系统和事务日志资源少,但 TRUNCATE 无事务且不触发 trigger,有可能造成事故,故不建议在开发代码中使用此语句。
说明:TRUNCATE TABLE 在功能上与不带 WHERE 子句的 DELETE 语句相同。
1.4、ORM 映射
1)【强制】在表查询中,一律不要使用 * 作为查询的字段列表,需要哪些字段必须明确写明。
说明:
增加查询分析器解析成本。
增减字段容易与 resultMap 配置不一致。
无用字段增加网络消耗,尤其是 text 类型的字段。
2)【强制】POJO 类的布尔属性不能加 is,而数据库字段必须加 is_,要求在 resultMap 中进行字段与属性之间的映射。
说明:参见定义 POJO 类以及数据库字段定义规定,在中增加映射,是必须的。在 MyBatis Generator 生成的代码中,需要进行对应的修改。
3)【强制】不要用 resultClass 当返回参数,即使所有类属性名与数据库字段一一对应,也需要定义;反过来,每一个表也必然有一个 POJO 类与之对应。
说明:配置映射关系,使字段与 DO 类解耦,方便维护。
4)【强制】sql.xml 配置参数使用:#{},#param# 不要使用${} 此种方式容易出现 SQL 注入。
【强制】iBATIS 自带的 queryForList(String statementName,int start,int size)不推荐使用。
说明:其实现方式是在数据库取到 statementName 对应的 SQL 语句的所有记录,再通过 subList 取 start,size 的子集合。
正例:
Map<String, Object> map = new HashMap<>();
map.put("start", start);
map.put("size", size);
5)【强制】不允许直接拿 HashMap 与 Hashtable 作为查询结果集的输出。
说明:resultClass=”Hashtable”,会置入字段名和属性值,但是值的类型不可控。
6)【强制】更新数据表记录时,必须同时更新记录对应的 gmt_modified 字段值为当前时间。
【推荐】不要写一个大而全的数据更新接口。传入为 POJO 类,不管是不是自己的目标更新字段,都进行 update table set c1=value1,c2=value2,c3=value3; 这是不对的。执行 SQL 时,不要更新无改动的字段,一是易出错;二是效率低;三是增加 binlog 存储。
7)【参考】@Transactional 事务不要滥用。事务会影响数据库的 QPS,另外使用事务的地方需要考虑各方面的回滚方案,包括缓存回滚、搜索引擎回滚、消息补偿、统计修正等。
8)【参考】<isEqual>中的 compareValue 是与属性值对比的常量,一般是数字,表示相等时带上此条件;<isNotEmpty>表示不为空且不为 null 时执行;<isNotNull>表示不为 null 值时执行。
2、工程结构
2.1、 应用分层
1)【推荐】图中默认上层依赖于下层,箭头关系表示可直接依赖,如:开放接口层可以依赖于 Web 层,也可以直接依赖于 Service 层,依此类推:
开放接口层:可直接封装 Service 方法暴露成 RPC 接口;通过 Web 封装成 http 接口;进行网关安 全控制、流量控制等。
终端显示层:各个端的模板渲染并执行显示的层。当前主要是 velocity 渲染,JS 渲染,JSP 渲染,移动端展示等。
Web 层:主要是对访问控制进行转发,各类基本参数校验,或者不复用的业务简单处理等。
Service 层:相对具体的业务逻辑服务层。
Manager 层:通用业务处理层,它有如下特征:
对第三方平台封装的层,预处理返回结果及转化异常信息。
对 Service 层通用能力的下沉,如缓存方案、中间件通用处理。
与 DAO 层交互,对多个 DAO 的组合复用。
DAO 层:数据访问层,与底层 MySQL、Oracle、Hbase 等进行数据交互。
外部接口或第三方平台:包括其它部门 RPC 开放接口,基础平台,其它公司的 HTTP 接口。
2)【参考】(分层异常处理规约)在 DAO 层,产生的异常类型有很多,无法用细粒度的异常进行 catch,使用 catch(Exception e)方式,并 throw new DAOException(e),不需要打印日志,因为日志在 Manager/Service 层一定需要捕获并打印到日志文件中去,如果同台服务器再打日志,浪费性能和存储。在 Service 层出现异常时,必须记录出错日志到磁盘,尽可能带上参数信息,相当于保护案发现场。如果 Manager 层与 Service 同机部署,日志方式与 DAO 层处理一致,如果是单独部署,则采用与 Service 一致的处理方式。Web 层绝不应该继续往上抛异常,因为已经处于顶层,如果意识到这个异常将导致页面无法正常渲染,那么就应该直接跳转到友好错误页面,加上用户容易理解的错误提示信息。开放接口层要将异常处理成错误码
和错误信息方式返回。
3)【参考】分层领域模型规约:
DO(Data Object):此对象与数据库表结构一一对应,通过 DAO 层向上传输数据源对象。
DTO(Data Transfer Object):数据传输对象,Service 或 Manager 向外传输的对象。
BO(Business Object):业务对象,由 Service 层输出的封装业务逻辑的对象。
AO(Application Object):应用对象,在 Web 层与 Service 层之间抽象的复用对象模型,极为贴近展示层,复用度不高。
VO(View Object):显示层对象,通常是 Web 向模板渲染引擎层传输的对象。
Query:数据查询对象,各层接收上层的查询请求。注意超过 2 个参数的查询封装,禁止使用 Map 类来传输。