0基础跟德姆(dom)一起学AI 自然语言处理19-输出部分实现

1 输出部分介绍

  • 输出部分包含:
    • 线性层
    • softmax层

2 线性层的作用

  • 通过对上一步的线性变化得到指定维度的输出, 也就是转换维度的作用.

3 softmax层的作用

  • 使最后一维的向量中的数字缩放到0-1的概率值域内, 并满足他们的和为1.

3.1 线性层和softmax层的代码分析

# 解码器类 Generator 实现思路分析
# init函数 (self, d_model, vocab_size)# 定义线性层self.project
# forward函数 (self, x)# 数据 F.log_softmax(self.project(x), dim=-1)class Generator(nn.Module):def __init__(self, d_model, vocab_size):# 参数d_model 线性层输入特征尺寸大小# 参数vocab_size 线层输出尺寸大小super(Generator, self).__init__()# 定义线性层self.project = nn.Linear(d_model, vocab_size)def forward(self, x):# 数据经过线性层 最后一个维度归一化 log方式x = F.log_softmax(self.project(x), dim=-1)return x
  • nn.Linear演示:
>>> m = nn.Linear(20, 30)
>>> input = torch.randn(128, 20)
>>> output = m(input)
>>> print(output.size())
torch.Size([128, 30])
  • 函数调用
if __name__ == '__main__':# 实例化output层对象d_model = 512vocab_size = 1000my_generator = Generator(d_model, vocab_size )# 准备模型数据x = torch.randn(2, 4, 512)# 数据经过out层gen_result = my_generator(x)print('gen_result--->', gen_result.shape, '\n', gen_result)
  • 输出效果
gen_result---> torch.Size([2, 4, 1000]) tensor([[[-6.5949, -7.0295, -6.5928,  ..., -7.4317, -7.5488, -6.4871],[-7.0481, -6.2352, -7.2797,  ..., -6.1491, -6.1621, -7.1798],[-8.1724, -7.0675, -8.2814,  ..., -6.0033, -7.1100, -7.6844],[-6.2466, -6.6074, -6.1852,  ..., -6.8373, -7.6600, -6.8578]],[[-7.7598, -7.4174, -6.2134,  ..., -7.8000, -6.9862, -6.9261],[-6.4790, -7.5458, -6.2342,  ..., -6.8340, -6.6827, -7.0287],[-7.2524, -7.2598, -7.0600,  ..., -7.5680, -6.9492, -6.7689],[-6.6260, -6.1928, -6.7045,  ..., -6.6323, -7.9005, -7.5397]]],grad_fn=<LogSoftmaxBackward0>)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/6796.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

uart iic spi三种总线的用法

1、uart串口通信 这种连接方式抗干扰能力弱&#xff0c;旁边有干扰源就会对收发的电平数据造成干扰&#xff0c;进而导致数据失真 这种连接方式一般适用于一块板子上面的两个芯片之间进行数据传输 &#xff0c;属于异步全双工模式。 1.空闲位&#xff1a;当不进行数据收发时&am…

类与对象(上)

面向过程和面向对象初步认识 C语言是面向过程的&#xff0c;关注的是过程&#xff0c;分析出求解问题的步骤&#xff0c;通过函数调用逐步解决问题。 C是基于面向对象的&#xff0c;关注的是对象&#xff0c;将一件事情拆分成不同的对象&#xff0c;靠对象之间的交互完成。 类的…

三元组抽取在实际应用中如何处理语义模糊性?

在实际应用中&#xff0c;三元组抽取面临语义模糊性的问题&#xff0c;这主要体现在输入文本的非规范描述、复杂句式以及多义性等方面。为了有效处理这种模糊性&#xff0c;研究者们提出了多种方法和技术&#xff0c;以下是一些关键策略&#xff1a; 基于深度学习的方法 深度学…

【线性代数】基础版本的高斯消元法

[精确算法] 高斯消元法求线性方程组 线性方程组 考虑线性方程组&#xff0c; 已知 A ∈ R n , n , b ∈ R n A\in \mathbb{R}^{n,n},b\in \mathbb{R}^n A∈Rn,n,b∈Rn&#xff0c; 求未知 x ∈ R n x\in \mathbb{R}^n x∈Rn A 1 , 1 x 1 A 1 , 2 x 2 ⋯ A 1 , n x n b 1…

智慧脚下生根,智能井盖监测终端引领城市安全新革命

在繁忙的都市生活中&#xff0c;我们往往只关注地面的繁华与喧嚣&#xff0c;却忽略了隐藏在地面之下的基础设施——井盖。这些看似不起眼的井盖&#xff0c;实则承担着排水、通讯、电力等重要功能&#xff0c;是城市安全运转的重要一环。然而&#xff0c;传统的井盖管理面临着…

如何快速开发LabVIEW项目,成为LabVIEW开发的高手

发现了一篇多年前写的文章&#xff0c;转发到这里 如何快速开发LabVIEW项目&#xff0c;成为LabVIEW开发的高手。 如果您手里有LabVIEW项目&#xff0c;领导催的又很紧&#xff0c;该怎么办&#xff1f; 如果您公司规模小&#xff0c;就想把LabVIEW项目快速搞定&#xff0c;有什…

Zemax 非序列模式下的颜色检测器和颜色混合

在 Zemax 的非序列模式中&#xff0c;探测器用于捕获系统中射线的信息。可以使用各种类型的探测器来捕获光学系统性能的不同方面&#xff0c;例如矩形探测器&#xff0c;它存储撞击它的 NSC 源射线的能量数据。 另一种经常使用的探测器类型是 Detector Color&#xff0c;它是一…

Redis(5,jedis和spring)

在前面的学习中&#xff0c;只是学习了各种redis的操作&#xff0c;都是在redis命令行客户端操作的&#xff0c;手动执行的&#xff0c;更多的时候就是使用redis的api&#xff08;&#xff09;&#xff0c;进一步操作redis程序。 在java中实现的redis客户端有很多&#xff0c;…

AAAI2024论文解读|HGPROMPT Bridging Homogeneous and Heterogeneous Graphs

论文标题 HGPROMPT: Bridging Homogeneous and Heterogeneous Graphs for Few-shot Prompt Learning 跨同构异构图的小样本提示学习 论文链接 HGPROMPT: Bridging Homogeneous and Heterogeneous Graphs for Few-shot Prompt Learning论文下载 论文作者 Xingtong Yu, Yuan…

闲鱼自动抓取/筛选/发送系统

可监控闲鱼最新发布商品&#xff0c;发送钉钉 1&#xff0c;精准关键词匹配&#xff1a;输入核心关键词&#xff0c;精准定位与之高度契合的信息&#xff0c;确保搜索结果直击要点&#xff0c;满足您对特定内容的急切需求。 2&#xff0c;标题关键词智能筛选&#xff1a;不仅着…

AI编程工具使用技巧:在Visual Studio Code中高效利用阿里云通义灵码

AI编程工具使用技巧&#xff1a;在Visual Studio Code中高效利用阿里云通义灵码 前言一、通义灵码介绍1.1 通义灵码简介1.2 主要功能1.3 版本选择1.4 支持环境 二、Visual Studio Code介绍1.1 VS Code简介1.2 主要特点 三、安装VsCode3.1下载VsCode3.2.安装VsCode3.3 打开VsCod…

【Unity3D】Unity混淆工具Obfuscator使用

目录 一、导入工具 二、各种混淆形式介绍 2.1 程序集混淆 2.2 命名空间混淆 2.3 类混淆 2.4 函数混淆 2.5 参数混淆 2.6 字段混淆 2.7 属性混淆 2.8 事件混淆 三、安全混淆 四、兼容性处理 4.1 动画方法兼容 4.2 GUI方法兼容 4.3 协程方法兼容 五、选项 5.1 调…

2024年终总结:技术成长与突破之路

文章目录 前言一、技术成长&#xff1a;菜鸟成长之路1. 学习与实践的结合2. 技术分享与社区交流 二、生活与事业的平衡&#xff1a;技术之外的思考1. 时间管理与效率提升2. 技术对生活的积极影响 三、突破与展望&#xff1a;未来之路1. 技术领域的突破2. 未来规划与目标 四、结…

计算机网络-运输层

重点内容&#xff1a; 运输层 是整个网络体系结构中的关键层次之一。一定要弄清以下一些重要概念&#xff1a; (1) 运输层为相互通信的应用进程提供逻辑通信。 (2) 端口和套接字的意义。 (3) 无连接的 UDP 的特点。 (4) 面向连接的 TCP 的特点。 (5) 在不可靠的网…

【Elasticsearch】inference ingest pipeline

Elasticsearch 的 Ingest Pipeline 功能允许你在数据索引之前对其进行预处理。通过使用 Ingest Pipeline&#xff0c;你可以执行各种数据转换和富化操作&#xff0c;包括使用机器学习模型进行推理&#xff08;inference&#xff09;。这在处理词嵌入、情感分析、图像识别等场景…

使用 .NET Core 6.0 Web API 上传单个和多个文件

示例代码&#xff1a; https://download.csdn.net/download/hefeng_aspnet/90138968 介绍 我们将在 IFormFile 接口和 .NET 提供的其他接口的帮助下&#xff0c;逐步讨论单个和多个文件上传。 .NET 提供了一个 IFormFile 接口&#xff0c;代表 HTTP 请求中传输的文件。 此外…

Ceisum无人机巡检直播视频投射

接上次的视频投影&#xff0c;Leader告诉我这个视频投影要用在两个地方&#xff0c;一个是我原先写的轨迹回放那里&#xff0c;另一个在无人机起飞后的地图回显&#xff0c;要实时播放无人机拍摄的视频&#xff0c;还要能转镜头&#xff0c;让我把这个也接一下。 我的天&#x…

Day21-【软考】短文,计算机网络开篇,OSI七层模型有哪些协议?

文章目录 OSI七层模型有哪些&#xff1f;有哪些协议簇&#xff1f;TCP/IP协议簇中的TCP协议三次握手是怎样的&#xff1f;基于UDP的DHCP协议是什么情况&#xff1f;基于UDP的DNS协议是什么情况&#xff1f; OSI七层模型有哪些&#xff1f; 题目会考广播域 有哪些协议簇&#x…

媒体新闻发稿要求有哪些?什么类型的稿件更好通过?

为了保证推送信息的内容质量&#xff0c;大型新闻媒体的审稿要求一向较为严格。尤其在商业推广的过程中&#xff0c;不少企业的宣传稿很难发布在这些大型新闻媒体平台上。 媒体新闻发稿要求有哪些&#xff1f;就让我们来了解下哪几类稿件更容易过审。 一、媒体新闻发稿要求有哪…

Flutter_学习记录_导航和其他

Flutter 的导航页面跳转&#xff0c;是通过组件Navigator 和 组件MaterialPageRoute来实现的&#xff0c;Navigator提供了很多个方法&#xff0c;但是目前&#xff0c;我只记录我学习过程中接触到的方法&#xff1a; Navigator.push(), 跳转下一个页面Navigator.pop(), 返回上一…