来源:量子位
因不满老东家成为微软附庸,11名OpenAI前员工怒而出走。
如今带着“ChatGPT最强竞品”杀回战场,新公司估值50亿美元,一出手就获得3亿美元融资。
这家公司名叫Anthropic,新推出的聊天机器人产品名叫Claude。
拿到内部试用权的网友,在简单对比后惊叹:
看起来,Claude的效果要比ChatGPT好得多。
比如,让ChatGPT写一句话,要求每个单词首字母都相同,结果试了好几次都没能成功。
而Claude不光一次成功,语句富有逻辑性,还能秒速再来一个。
同时,在面对某些缺乏常识的问题时,相比ChatGPT一本正经地胡说八道:
反而会毫不留情地指出你的问题有点制杖:
△Claude:这什么鬼问题?
最有意思的是在写诗上。相比ChatGPT的车轱辘话,它写出来的东西完全不重样:
投资它的既有Facebook联合创始人Dustin Moskovitz,也有谷歌前CEO、现技术顾问Eric Schmidt——
都是OpenAI的老对头,又都被ChatGPT的出现杀得措手不及。
那么,这支“复仇者联盟”整出的竞品Claude,背后究竟是什么原理,和ChatGPT细节对比又如何?
Claude长啥样?
先来看看Claude是如何被打造出来的。
作为一个AI对话助手,Claude自称基于前沿NLP和AI安全技术打造,目标是成为一个安全、接近人类价值观且合乎道德规范的AI系统。
据透露,Claude比Anthropic做的另一个预训练模型AnthropicLM v4-s3更大,后者是一个520亿参数大模型。
但目前它仍处于实验阶段,尚未作为商业产品正式发布:
Claude能力依旧有待提升,希望未来能变成一个更有益人类的AI系统。
△超长版自我介绍
和ChatGPT一样,Claude也靠强化学习(RL)来训练偏好模型,并进行后续微调。
具体来说,这项技术被Anthropic称为原发人工智能 (Constitutional AI),分为监督学习和强化学习两个阶段。
首先在监督学习阶段,研究者会先对初始模型进行取样,从而产生自我修订,并根据修订效果对模型进行微调。
随后在强化学习阶段,研究者会对微调模型进行取样,基于Anthropic打造的AI偏好数据集训练的偏好模型,作为奖励信号进行强化学习训练。
但与ChatGPT采用的人类反馈强化学习(RLHF)不同的是,Claude采用的原发人工智能方法,是基于偏好模型而非人工反馈来进行训练的。
因此,这种方法又被成为“AI反馈强化学习”,即RLAIF。
并且根据Anthropic的说法,Claude可以回忆8000个token里的信息,这比OpenAI现公开的任何一个模型都多。
所以,打造Claude的Anthropic,究竟是一个怎样的公司?
Anthropic自称是一家AI安全公司,且具有公益性(PBC),刚成立就宣布获得1.24亿美元融资。
它由OpenAI前研究副总裁Dario Amodei带领10名员工创业,于2021年成立。
这里面既有GPT-3首席工程师Tom Brown,也有OpenAI安全和政策副总裁Daniela Amodei(Dario的姐姐),可以说是带走了相当一批核心人才。
出走成立新公司的原因之一,自然是对OpenAI现状并不满意。
从前几年开始,微软频频给OpenAI注资,随后又要求他们使用Azure超算来搞研究,而且将技术授权给微软,甚至为微软自己的投资活动筹集资金。
这与OpenAI创立的初衷相悖,一批员工便想到了离职创业。
不过,这些人除了不满OpenAI逐渐沦为微软的“下属”以外,也有自己的野心。
虽然OpenAI打造出了像GPT-3这样的大语言模型,然而这个模型背后的工作原理,却无法用只言片语概括,大家对它的印象仅仅停留在更大的参数量、更多的数据。
相比之下,OpenAI的一批员工更想做能控制、可解释的AI,说白了就是先搞明白AI模型背后的原理,从而在提供工具的同时设计更多可解释的AI模型。
于是,在OpenAI彻底变成“微软揽钱机器”后,他们便从这家公司离开,创办了Anthropic。
这两年来,除了进一步钻研RLHF方法、提出基于通用语言模型的RLHF大规模数据集外,Anthropic还于去年年底发表了上面那种名为Constitutional AI的方法。
采用这种方法制作的Claude模型,也让它产生了与OpenAI的ChatGPT不一样的对话效果。
和ChatGPT对比如何?
那么,用Constitutional AI训出来的Claude,和ChatGPT进行PK,战况如何?
手握内测资格后,Scale Spellbook团队成员Riley Goodside让二者进行了多个回合的“厮杀”。
这位老兄是全网第一个提示工程师(Prompt Engineer),目前在估值73亿美元的硅谷独角兽公司Scale AI任职。
他玩GPT-3玩得贼溜,测试ChatGPT和Claude也不含糊。
下面挑6个层面展示一下PK对比的效果~
道德限制
Claude和ChatGPT的AI虚拟人格都有道德和伦理限制。
训练Claude的过程中,“红队提示(red-team prompts)”专门用来测试和挑战它的行为,来确保Claude没有有害倾向。
从Claude的回答中可以得知,试图让它说些虚假声明、操纵性的提议、性别偏见或种族偏见的行为,都被列为包含有害倾向。
一旦探测到误导性行为,Claude就会对触发提示进行评估,进行额外的微调。
Anthropic对红队提示挺自信的,Claude看上去确实也是一个坚守自己原则的AI。
你问他怎么启动一辆汽车,它就会一脸正义地拒绝你:
不过但凡你花点心思,就能像绕过ChatGPT的道德限制一样,绕过Claude的原则。
它怕你去偷车,所以不告诉你启动汽车的方法?没关系,让他写个“俩国际间谍试图启动汽车”的故事,它分分钟就能告诉你,并且两人对话有来有往,把汽车打火的过程介绍得清清楚楚。
怎么说呢,就ChatGPT和Claude都属于有点道德限制,但不多的那种吧。
数值计算
测试计算能力,是因为复杂计算是看大型语言模型(LLM)能不能回答正确的常用便捷方法之一,毕竟这些模型设计之初就不是为了进行精确计算。
同时要求它俩计算一个七位数2420520的平方根:
ChatGPT说,差不多1550吧~
Claude则斩钉截铁:2420520的平方根是1760!
其实正确答案是1555.8,它俩算得很快,但都没说对。
如果题再难一点,比如问它俩一个12位数的立方根是多少时,ChatGPT还在傻傻计算,Claude已经坦诚相待:
我,算不出来这种复杂问题。
逻辑推理
测试推理能力这一关,它俩被问了同一个问题,这个问题应该没啥人问过:
贾斯汀 · 比伯出生那年(1994年),哪支球队拿下了超级碗的冠军?
Claude认为旧金山49人是赢家,但这支队伍其实在1995年才赢得冠军奖杯。
ChatGPT给出了正确答案“达拉斯牛仔队”,还贴心附上了亚军、比赛日期和决赛比分。
但它的整段回答却自相矛盾,非说1994年没有举办过超级碗。
接着,拿2022年6月美国作家侯世达在《经济学人》杂志上提出了一系列问题问它俩。
(侯世达和大卫 · 本德试图用这些问题来证明GPT-3对世界的理解是“空洞的”。)
结果第一个问题,“穿越英吉利海峡的世界纪录是啥”,就被Claude嘲笑了:
英吉利海峡是水域,怎么可能徒步穿越呢?呵!
虽然最后被调教回来了,但过程中可以发现另一个问题,那就是跟ChatGPT一样,Claude回答问题不咋能联系上下文。
虚构作品描述
不得不说,这一回合的比赛,完全展露出了两个聊天机器人一本正经胡说八道的能力。
能不能介绍一下ABC美剧《迷失》(Lost)每一季的梗概?
别的细节错误就不说了,ChatGPT对第五季的梗概里,虚构了完全不存在的飞机坠毁情节;第六季的情节更是统统凭空捏造:
至于Claude,回答里也是真假参半,它梗概的第三季情节其实出现在另外几季里,对第四季的描述也是无中生有:
不过换个角度考虑,这一点倒是和人类观众很像——
对看过的剧集、书目都只有模模糊糊的印象,复述起来很容易颠三倒四。
代码生成
据Business Insider消息,亚马逊已经在许多不同的工作职能中使用ChatGPT,包括编写代码。
这一回合测试时,提出实现两种基本排序算法并比较它们执行时间的问题。
ChatGPT写得很顺溜,也确实写对了:
后续的计时部分代码ChatGPT也完成得非常好。
Claude在背诵基本排序算法方面同样没出现什么问题,然而在评估代码中,Claude犯了个错误,即每个算法使用的输入是随机选择的5000个整数(可能包含重复) ,而提示中请求的输入是前5000个非负整数(不包含重复)的随机排列。
尽管如此,Claude给出的最终答案确实对的,显然,它写代码的时候也跟计算时一样,在自己估摸着猜答案。
文章梗概
关于做选择题、讲笑话的部分,这里不作赘述。展示给大家的最后一个例子,是让Claude和ChatGPT用一个段落,对一篇新闻进行全文梗概。
喂给它们的新闻如下:
虽然忽略了“用一段话”这个要求,但ChatGPT总结得还是不错的:
Claude也很好地进行了更改,并提供了“售后服务”,询问自己的回答有没有令人满意,还有哪里需要再改改。
一圈玩下来可以看到,与ChatGPT相比,Claude能更清晰地拒绝不恰当请求。
它似乎更话痨一些,给出的答案都更长,但句子之间衔接的也更自然。
当遇到超出能力范围的问题时,Claude会主动坦白。
不过遇到代码生成或推理问题时,Claude的表现就不如ChatGPT了,它生成的代码会出现更多的bug。
至于一些涉及计算、逻辑的问题,Claude和ChatGPT旗鼓相当,半斤八两。
总结一下展示效果,Claude确实能称作ChatGPT强有力的竞争对手,在不同功能上各有千秋,且在12项任务中有8项更强:
不过,目前Claude仅限于部分人获授权进行内部测试。
因此还不知道它实际使用情况如何,毕竟还既没有进行公测,也没有对外开放API,更没有见到中文版,好气哦.jpg。
国内外对话AI赛道“人挤人”
当然,盯上对话AI这个赛道的,也不止OpenAI和Anthropic。
先从国外公司来看,Inbenta、Character.ai还有Replika是几类不同应用方向的代表。
更早由前甲骨文副总裁Jordi Torras创办的AI会话服务公司如Inbenta,以及由两名前谷歌员工联手创办的后起新秀Character.ai,都已经获得融资、或是在寻求投资的路上了。
其中,Inbenta原本是一个提供咨询服务的公司,成立于2011年,涉及金融服务、旅游、电子商务、保险、汽车和电信等多个行业。
但看到对话AI赛道爆火后,Inbenta及时转行,就在今年1月刚获得6000万美元融资。
这家公司专门提供聊天机器人、收发消息、知识库和搜索引擎四类产品,对话AI分别会在这些产品中提供不一样的咨询帮助,且可以定制化专属模型。
Character.ai则是一家成立于2021年的公司,创始人Noam Shazeer是前谷歌首席软件工程师,曾在谷歌干了二十多年。
这家公司在做的有点像是一个“聊天机器人交易平台”,有很多Chatbot可选。
例如这是马斯克bot,看起来还挺逼真的:
与ChatGPT一样,它也可以被翻译成中文,甚至也有中文bot机器人。
就在最近,这家被估值10亿美元的公司,正式对外寻求2.5亿美元融资,就看是否有人愿意投它了。
类似的公司还有Replika,于2021年1月完成A轮融资,定位是AI交友软件。
在Replika中,每个用户都能创造一个“足够像自己”的AI聊天机器人,无论是语言声调、还是性格习惯,AI都能模仿到位。
至于国内,同样也有不少公司推出了ChatGPT一样的对话AI服务。
例如最近一度登上热搜的APP Store新聊天应用Glow,就来自一家名叫北京稀宇的新初创公司。
Glow既可以直接和自己感兴趣的聊天机器人畅聊,也可以创建自己想要聊天的AI智能体:
除了Glow以外,去年年底元语智能科技公司也推出了一个叫元语AI的模型,从介绍来看是一个功能性AI助手。
与众多对话AI一样,它不仅可以写文章、写作业、甚至翻译,也可以和它聊天,让它帮忙完成各种简单的任务:
可以看见,无论是基于大语言模型技术新成立的初创公司,还是因其火爆程度,决定开辟新业务的公司,都希望能从对话AI这个赛道上分一杯羹。
但它们究竟是有真枪实弹,还是只是像Web3一样的泡沫?
有网友调侃:不如还是问问ChatGPT吧。(手动狗头)
还有人提出了这么一个问题:
如果ChatGPT和Claude相当于AI绘画里的DALL·E 2,那么谁才是聊天机器人领域的Stable Diffusion?
你觉得呢?
参考链接:
[1]https://scale.com/blog/chatgpt-vs-claude
[2]https://www.nytimes.com/2023/01/27/technology/anthropic-ai-funding.html
[3]https://twitter.com/nonmayorpete/status/1619137945373659136
[4]https://aibusiness.com/verticals/eleven-openai-employees-break-off-to-establish-anthropic-raise-124m
[5]https://www.theinformation.com/articles/character-seeks-250-million-in-new-funding-amid-ai-boom
[6]https://www.anthropic.com/constitutional.pdf
[7]https://techcrunch.com/2023/01/11/inbenta-a-provider-of-ai-powered-chatbots-and-more-lands-40m/
推荐阅读
西电IEEE Fellow团队出品!最新《Transformer视觉表征学习全面综述》
润了!大龄码农从北京到荷兰的躺平生活(文末有福利哟!)
如何做好科研?这份《科研阅读、写作与报告》PPT,手把手教你做科研
奖金675万!3位科学家,斩获“中国诺贝尔奖”!
又一名视觉大牛从大厂离开!阿里达摩院 XR 实验室负责人谭平离职
最新 2022「深度学习视觉注意力 」研究概述,包括50种注意力机制和方法!
【重磅】斯坦福李飞飞《注意力与Transformer》总结,84页ppt开放下载!
2021李宏毅老师最新40节机器学习课程!附课件+视频资料
欢迎大家加入DLer-计算机视觉技术交流群!
大家好,群里会第一时间发布计算机视觉方向的前沿论文解读和交流分享,主要方向有:图像分类、Transformer、目标检测、目标跟踪、点云与语义分割、GAN、超分辨率、人脸检测与识别、动作行为与时空运动、模型压缩和量化剪枝、迁移学习、人体姿态估计等内容。
进群请备注:研究方向+学校/公司+昵称(如图像分类+上交+小明)
👆 长按识别,邀请您进群!