算法每日双题精讲 —— 二分查找(山脉数组的峰顶索引,寻找峰值)

 🌟快来参与讨论💬,点赞👍、收藏⭐、分享📤,共创活力社区。 🌟 

别再犹豫了!快来订阅我们的算法每日双题精讲专栏,一起踏上算法学习的精彩之旅吧💪   


        在算法的广袤世界里,二分查找算法凭借其高效性与独特的解题思路,成为众多开发者和算法爱好者的得力工具。今天,让我们一同深入研究 “山脉数组的峰顶索引” 以及 “寻找峰值” 这两道经典题目,探索二分查找算法在其中的巧妙应用。

目录

一、山脉数组的峰顶索引

📖题目描述

🧠讲解算法原理

💻代码实现(以C++为例)

复杂度分析

二、寻找峰值

📖题目描述

🧠讲解算法原理

💻代码实现(以 C++ 为例)

复杂度分析


一、山脉数组的峰顶索引

题目链接👉【力扣】

📖题目描述

 

🧠讲解算法原理

        对于这道题,我们可以利用二分查找的思想来高效地找到山脉数组的峰顶索引。

首先,初始化左指针 left 为 1,右指针 right 为数组长度减 2。这是因为数组两端的元素不可能是峰顶(根据山脉数组的定义)。

在循环过程中,计算中间索引 mid = left + (right - left) / 2。然后比较 arr[mid] 与 arr[mid + 1] 的大小关系:

  • 如果 arr[mid] < arr[mid + 1],说明当前位置在上升坡,峰顶在 mid 的右侧,所以将 left 更新为 mid + 1
  • 如果 arr[mid] > arr[mid + 1],说明当前位置在下降坡或者已经是峰顶,峰顶在 mid 及其左侧,将 right 更新为 mid

当 left 等于 right 时,循环结束,此时 left(或 right)所指向的索引就是山脉数组的峰顶索引。

💻代码实现(以C++为例)

#include <iostream>
#include <vector>using namespace std;// 寻找山脉数组的峰顶索引
int peakIndexInMountainArray(vector<int>& arr) {int left = 1, right = arr.size() - 2;while (left < right) {int mid = left + (right - left) / 2;if (arr[mid] < arr[mid + 1]) {left = mid + 1;} else {right = mid;}}return left;
}int main() {vector<int> arr = {0, 1, 0};int result = peakIndexInMountainArray(arr);cout << "山脉数组的峰顶索引是: " << result << endl;return 0;
}

复杂度分析

  • 时间复杂度:每次循环都将搜索区间缩小一半,所以时间复杂度为 O(logn),其中  是数组的长度。相比从数组头部到尾部逐个遍历查找峰顶的暴力解法(时间复杂度为O(n) ),效率有显著提升。
  • 空间复杂度:整个过程只使用了几个额外的变量来存储指针和中间索引,不需要额外的复杂数据结构,空间复杂度为O(1) ,在空间利用上非常高效。

二、寻找峰值

题目链接👉【力扣】

📖题目描述

🧠讲解算法原理

        这道题同样可以借助二分查找来解决。

初始化左指针 left 为 0,右指针 right 为数组长度减 1。

在循环中,计算中间索引 mid = left + (right - left) // 2。接着比较 nums[mid] 与 nums[mid + 1] 的大小:

  • 若 nums[mid] < nums[mid + 1],说明峰值在 mid 的右侧,将 left 更新为 mid + 1
  • 若 nums[mid] > nums[mid + 1],说明峰值在 mid 及其左侧,将 right 更新为 mid

当 left 等于 right 时,循环结束,此时返回的 left(或 right)就是一个峰值的索引。因为根据假设,数组两端虚拟的负无穷保证了一定能找到峰值。

💻代码实现(以 C++ 为例)

#include <iostream>
#include <vector>using namespace std;// 寻找峰值元素的索引
int findPeakElement(vector<int>& nums) {int left = 0, right = nums.size() - 1;while (left < right) {int mid = left + (right - left) / 2;if (nums[mid] < nums[mid + 1]) {left = mid + 1;} else {right = mid;}}return left;
}int main() {vector<int> nums = {1, 2, 3, 1};int result = findPeakElement(nums);cout << "一个峰值元素的索引是: " << result << endl;return 0;
}

复杂度分析

  • 时间复杂度:由于每次迭代都能将搜索区间缩小一半,时间复杂度为 O(logn),其中 n 是数组的长度。这种方式比遍历整个数组查找峰值(时间复杂度为 )要快得多。
  • 空间复杂度:仅使用了几个简单的变量来存储指针和中间索引,没有使用额外的复杂数据结构,空间复杂度为 O(1),在空间上非常节省。

        通过对这两道题目的深入分析,我们进一步体会到二分查找算法的强大之处。在实际的算法学习和编程过程中,灵活运用二分查找及其变体,能够大大提高解决问题的效率。希望大家继续努力,不断探索算法世界的奥秘!我会持续为大家带来更多精彩的算法知识分享。

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/7007.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

macOS如何进入 Application Support 目录(cd: string not in pwd: Application)

错误信息 cd: string not in pwd: Application 表示在当前目录下找不到名为 Application Support 的目录。可能的原因如下&#xff1a; 拼写错误或路径错误&#xff1a;确保你输入的目录名称正确。目录名称是区分大小写的&#xff0c;因此请确保使用正确的大小写。正确的目录名…

如何为64位LabVIEW配置正确的驱动程序

在安装 64位 LabVIEW 后&#xff0c;确保驱动程序正确配置是关键。如果您首先安装了 32位 LabVIEW 和相关驱动&#xff0c;然后安装了 64位 LabVIEW&#xff0c;需要确保为 64位 LabVIEW 安装和配置适当的驱动程序&#xff0c;才能正常访问硬件设备。以下是详细步骤&#xff1a…

《Memory Barriers a Hardware View for Software Hackers》阅读笔记

CPU 设计者引入内存屏障&#xff08;memory barriers&#xff09;是为了应对在多处理器系统&#xff08;SMP&#xff09;中&#xff0c;内存引用重排序可能导致的同步问题。尽管重排序可以提高性能&#xff0c;但在某些情况下&#xff08;如同步原语&#xff09;&#xff0c;正…

ES设置证书和创建用户,kibana连接es

1、启动好es 2、进入es容器 docker exec -it es /bin/bash 3、生成ca证书 ./bin/elasticsearch-certutil ca 注&#xff1a;两个红方框位置直接回车 4、生成cert证书 ./bin/elasticsearch-certutil cert --ca elastic-stack-ca.p12 注&#xff1a;前两个红框直接回车&am…

【安当产品应用案例100集】034-安当KSP支持密评中存储数据的机密性和完整性

安当KSP是一套获得国密证书的专业的密钥管理系统。KSP的系统功能扩展图示如下&#xff1a; 我们知道商用密码应用安全性评估中&#xff0c;需要确保存储的数据不被篡改、删除或者破坏&#xff0c;必须采用合适的安全方案来确保存储数据的机密性和完整性。KSP能否满足这个需求呢…

STM32项目分享:智能厨房安全检测系统

目录 一、前言 二、项目简介 1.功能详解 2.主要器件 三、原理图设计 四、PCB硬件设计 PCB图 五、程序设计 六、实验效果 七、资料内容 项目分享 一、前言 项目成品图片&#xff1a; 哔哩哔哩视频链接&#xff1a; STM32智能厨房安全检测系统 &#xff08;资料分…

Poetry shell --> poetry-plugin-shell

当前环境&#xff1a;Poetry (version 2.0.1) python Python 3.11.8 根据&#xff1a;https://python-poetry.org/docs/managing-environments/#bash-csh-zsh 在新版本的 poetry 执行 poetry shell 会报错 这个功能目前需要使用 poetry-plugin-shell 插件 关于 poetry-plugin-s…

第84期 | GPTSecurity周报

GPTSecurity是一个涵盖了前沿学术研究和实践经验分享的社区&#xff0c;集成了生成预训练Transformer&#xff08;GPT&#xff09;、人工智能生成内容&#xff08;AIGC&#xff09;以及大语言模型&#xff08;LLM&#xff09;等安全领域应用的知识。在这里&#xff0c;您可以找…

【JavaEE进阶】Spring留言板实现

目录 &#x1f38d;预期结果 &#x1f340;前端代码 &#x1f384;约定前后端交互接口 &#x1f6a9;需求分析 &#x1f6a9;接口定义 &#x1f333;实现服务器端代码 &#x1f6a9;lombok介绍 &#x1f6a9;代码实现 &#x1f334;运行测试 &#x1f384;前端代码实…

基于SpringBoot格式化实体的时间类型以及静态注入依赖

一. 场景描述 在进行前后端交互时&#xff0c;发现实体的LocalDateTime返回的格式是这样的&#xff1a; 这不符合我们日常习惯的格式 “年-月-日 时:分:秒”&#xff0c;于是上网学习了前辈 励碼的文章SSM项目中LocalDateTime格式化最佳实践_localdatetime 格式化-CSDN博客解决…

计算机网络 (59)无线个人区域网WPAN

前言 无线个人区域网&#xff08;WPAN&#xff0c;Wireless Personal Area Network&#xff09;是一种以个人为中心&#xff0c;采用无线连接方式的个人局域网。 一、定义与特点 定义&#xff1a;WPAN是以个人为中心&#xff0c;实现活动半径小、业务类型丰富、面向特定群体的无…

TangoFlux 本地部署实用教程:开启无限音频创意脑洞

一、介绍 TangoFlux是通过流匹配和 Clap-Ranked 首选项优化&#xff0c;实现超快速、忠实的文本到音频生成的模型。 本模型由 Stability AI 提供支持&#x1f680; TangoFlux 可以在单个 A40 GPU 上在 ~3 秒内生成长达 34.1kHz 的立体声音频。 二、部署 安装方式非常简单 1…

[cg] 使用snapgragon 对UE5.3抓帧

最近想要抓opengl 的api&#xff0c;renderdoc在起应用时会闪退&#xff08;具体原因还不知道&#xff09;&#xff0c;试了下snapgraon, 还是可以的 官网需要注册登录后下载&#xff0c;官网路径&#xff1a;Developer | Qualcomm 为了方便贴上已经下载好的exe安装包&#x…

pycharm 运行远程环境问题 Error:Failed to prepare environment.

问题排查 拿到更详细的报错信息&#xff1a; Help > Diagnostic Tools > Debug Log Settings section: 添加下面的配置 com.intellij.execution.configurations.GeneralCommandLine 重显报错&#xff0c;我这里是再次运行代码打开 Help | Collect Logs and Diagnosti…

OS Copilot功能测评:智能助手的炫彩魔法

简介&#xff1a; OS Copilot 是一款融合了人工智能技术的智能助手&#xff0c;专为Linux系统设计&#xff0c;旨在提升系统管理和运维效率。本文详细介绍了在阿里云ECS实例上安装和体验OS Copilot的过程&#xff0c;重点评测了其三个核心参数&#xff1a;-t&#xff08;模式…

C++ lambda表达式

目录 1.lambda表达式 1.1什么是Lambda表达式&#xff1f; 1.2Lambda表达式的语法 1.3捕捉列表 1.4函数对象与lambda表达式 1.lambda表达式 1.1什么是Lambda表达式&#xff1f; Lambda表达式是C11标准引入的一种匿名函数&#xff0c;它允许你在需要函数的地方直接编写代码…

环境变量配置与问题解决

目录 方法 配置了还是运行不了想要的东西 解决方案 为什么 解决方案 方法 方法一&#xff1a;此电脑右击-属性-相关链接-高级系统设置-环境变量&#xff08;N&#xff09;-系统变量里面找到Path-三个确定】 方法二&#xff1a;winr cmd 黑框输入sysdm.cpl&#xff0c;后面…

AI News(1/21/2025):OpenAI 安全疏忽:ChatGPT漏洞引发DDoS风险/OpenAI 代理工具即将发布

1、OpenAI 的安全疏忽&#xff1a;ChatGPT API 漏洞引发DDoS风险 德国安全研究员 Benjamin Flesch 发现了一个严重的安全漏洞&#xff1a;攻击者可以通过向 ChatGPT API 发送一个 HTTP 请求&#xff0c;利用 ChatGPT 的爬虫对目标网站发起 DDoS 攻击。该漏洞源于 OpenAI 在处理…

【优选算法】10----无重复字符的最长子串

---------------------------------------begin--------------------------------------- 题目解析&#xff1a; 看到这一类题目&#xff0c;有没有那种一眼就感觉时要用到滑动窗口的感觉&#xff0c;铁子们&#xff1f; 讲解算法原理&#xff1a; 方法一: 暴力解法&#xff…

5. 马科维茨资产组合模型+政策意图AI金融智能体(Qwen-Max)增强方案(理论+Python实战)

目录 0. 承前1. AI金融智能体1.1 What is AI金融智能体1.2 Why is AI金融智能体1.3 How to AI金融智能体 2. 数据要素&计算流程2.1 参数集设置2.2 数据获取&预处理2.3 收益率计算2.4 因子构建与预期收益率计算2.5 协方差矩阵计算2.6 投资组合优化2.7 持仓筛选2.8 AI金融…