[概率论] 随机变量

Kolmogorov 定义的随机变量是基于测度论和实变函数的。这是因为随机变量的概念需要精确地定义其可能的取值、发生的概率以及这些事件之间的依赖关系。

  1. 测度论:在数学中,测度论是用来研究集合大小的理论,特别是无穷可数集和无界集的大小。对于随机变量,我们需要一个框架来度量事件的发生频率,即计算某个事件发生的概率。这需要使用测度论工具,如概率空间(由样本空间、σ-代数和概率测度组成),以及如何定义和操作这些测度。
  2. 实变函数:随机变量可以看作是映射,将一个样本点的随机结果映射到一个实数值。在数学分析中,我们需要实变函数的概念来理解这种映射的性质,例如连续性、可积性等。特别是对于随机过程的研究,需要考虑时间作为参数的映射。
    Kolmogorov 的公理化概率论提供了一个基于测度论和实变函数的框架,用于定义和分析随机变量及其分布。他的公理化体系包括:
  • 样本空间:这是一个基本的概念,包含了所有可能发生的事件的集合。
  • σ-代数:一个包含样本空间中所有事件的子集族,它使得我们可以定义事件的发生概率。
  • 概率测度:这是一个函数,将σ-代数中的每个事件映射到一个介于0和1之间的实数值,表示该事件发生的概率。
    通过这些概念,我们能够构建一个完备的概率框架,用于精确描述和操作随机现象。Kolmogorov 的公理化方法使得概率论变得更加严密和可分析,为后续的概率论理论研究和应用提供了坚实的基础。

可数集合

可数集合是指元素个数是有限的或者可以与自然数集一一对应的集合。具体来说,一个集合是可数的,如果满足以下条件之一:

  1. 有限集合:集合中的元素个数是有限的。例如,集合 {1, 2, 3} 是有限的,因此也是可数的。

  2. 无限可数集合:集合中的元素个数是无限的,但是可以与自然数集({1, 2, 3, …})建立一一对应关系。换句话说,集合中的每个元素都可以用自然数来唯一标识。例如,整数集和有理数集都是无限可数的。

  3. 不可数集合: 实数集,无理数集,康托尔三分集,都无法与自然数建立一一映射的关系。

可测集合

σ代数具有以下三个基本性质:

  1. 包含空集:σ代数必须包含空集,即 ∅ ∈ A \emptyset \in \mathcal{A} A
  2. 闭合于补集:如果 A ∈ F A \in \mathcal{F} AF,那么它的补集 A c A^c Ac(在全集 Ω \Omega Ω 中)也属于 F \mathcal{F} F
  3. 闭合于可数并:如果集合序列 { A n } \{A_n\} {An} 中的每个 A n A_n An 都属于σ代数 F \mathcal{F} F,那么它们的并集 ⋃ n = 1 ∞ A n \bigcup_{n=1}^{\infty} A_n n=1An 也属于 F \mathcal{F} F

则称二元组 ( Ω , F ) (\Omega,\mathcal{F}) (Ω,F) 是可测空间, F \mathcal{F} F Ω \Omega Ω 上的一个 σ \sigma σ 代数,如果 A ∈ F A\in \mathcal{F} AF 称集合 A A A F \mathcal{F} F-可测的。此外,σ代数还有一些其他重要的性质,例如:

  • 闭合于可数交:如果集合序列 { A n } \{A_n\} {An} 中的每个 A n A_n An 都属于σ代数 F \mathcal{F} F,那么它们的交集 ⋂ n = 1 ∞ A n \bigcap_{n=1}^{\infty} A_n n=1An 也属于 F \mathcal{F} F

可测函数

可测函数的定义
( X , A ) (X, \mathcal{A}) (X,A) ( Y , B ) (Y, \mathcal{B}) (Y,B) 是两个可测空间,其中 A \mathcal{A} A B \mathcal{B} B 分别是 X X X Y Y Y 上的 σ \sigma σ-代数。一个函数 f : X → Y f: X \rightarrow Y f:XY 被称为 ( X , A ) (X, \mathcal{A}) (X,A) ( Y , B ) (Y, \mathcal{B}) (Y,B) 的可测函数,如果对于 Y Y Y 中的所有 B ∈ B B \in \mathcal{B} BB,集合 f − 1 ( B ) = { x ∈ X : f ( x ) ∈ B } f^{-1}(B)=\{x \in X: f(x) \in B\} f1(B)={xX:f(x)B} 属于 A \mathcal{A} A

集合的测度

( Ω , F ) (\Omega, \mathcal{F}) (Ω,F) 是一个度量空间,其中 X X X 是一个非空集合, F \mathcal{F} F Ω \Omega Ω 上的 σ \sigma σ 代数。一个函数 μ : F → [ 0 , ∞ ] \mu: \mathcal{F} \rightarrow [0, \infty] μ:F[0,] 被称为集合 X X X 上的一个测度,如果它满足以下三个条件:

  1. 非负性:对于任意的 A ∈ F A \in \mathcal{F} AF,有 μ ( A ) ≥ 0 \mu(A) \geq 0 μ(A)0
    2.空集的测度为零 μ ( ∅ ) = 0 \mu(\emptyset) = 0 μ()=0
  2. 可数可加性:对于任意的一列两两不相交的集合 A 1 , A 2 , A 3 , … ∈ F A_1, A_2, A_3, \ldots \in \mathcal{F} A1,A2,A3,F,它们的并集也在 F \mathcal{F} F 中,并且有 μ ( ⋃ i = 1 ∞ A i ) = ∑ i = 1 ∞ μ ( A i ) \mu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i) μ(i=1Ai)=i=1μ(Ai)

如果还有对全集满足 μ ( X ) = 1 \mu(X)=1 μ(X)=1, 则称 μ \mu μ 是一个概率测度, 称 ( Ω , F , μ ) (\Omega,\mathcal{F},\mu) (Ω,F,μ) 为基本概率空间。

如果 μ ( X ) = 0 \mu(X)=0 μ(X)=0, 称 X X X 为零测度集合,或者几乎处处不会发生的事件。

随机变量

( Ω , F , P ) (\Omega, \mathcal{F}, P) (Ω,F,P) 是一个基本概率空间,其中 Ω \Omega Ω 是样本空间, F \mathcal{F} F Ω \Omega Ω 上的 σ \sigma σ 代数, P P P F \mathcal{F} F 上的概率测度。一个 随机变量 X X X 是从 Ω \Omega Ω 到实数集 R R R 的一个可测函数,即 X : Ω → R X: \Omega \rightarrow \mathbb{R} X:ΩR,且对于任意实数 x x x,集合 { ω ∈ Ω ∣ X ( ω ) ≤ x } \{\omega \in \Omega | X(\omega) \leq x\} {ωΩX(ω)x} 属于 F \mathcal{F} F

在 Kolmogorov 的框架下, 离散随机变量与连续随机变量也被统一了起来。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/16765.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

TongETLV3.0安装指引(by lqw)

文章目录 安装准备系统环境要求和端口jdk版本要求安装包磁盘要求安装脚本对系统配置的影响 系统配置vm.max_map_count 至少为 262144,且设置 vm.overcommit_memory 参数值为 1使用 TongETL 的 Linux 用户需要设置最大文件打开数为 65536用户需要有sodo权限。安装net…

AI前端开发:赋能开发者,提升解决实际问题的能力

近年来,人工智能技术飞速发展,深刻地改变着各行各业。在软件开发领域,AI写代码工具的出现更是引发了一场革命,尤其是前端开发领域,AI的应用正在显著提升开发者的解决实际问题的能力。本文将探讨AI前端开发如何提升效率…

【STM32】H743的以太网MAC控制器的一个特殊功能

调试743的MAC,翻阅手册的时候,发现了一个有意思的功能 混杂模式 H743的MAC控制器,可以设置为混杂模式,这就意味着它可以做一些网络监控的应用,譬如连接具备端口镜像功能的交换机,然后直接代替PC实现网络数据…

【Linux】Ubuntu Linux 系统 ——PHP开发环境

ℹ️大家好,我是练小杰,元宵节到了,在此祝大家元宵节快乐😆 新的一年里,愿你步步高升,事事如意,心想事成!! 本文是关于Linux 操作系统中部署PHP开发环境这部分基础内容,后…

SQL注入之布尔和时间盲注,sqli-labs

实验环境: sqli-labs,小皮面板搭建,edge浏览器 apache:2.4.39,MySQL:5.7 PHP:5.39 Python(pycharm2023):3 less-8 布尔盲注: 1.我这里是采用最简单的直接采…

C/C++后端开发面经

字节跳动 客户端开发 实习 一面(50min) 自我介绍是否愿意转语言,是否只愿意搞后端选一个项目来详细谈谈HTTP和HTTPS有什么区别?谈一下HTTPS加密的具体过程: 非对称加密 对称加密 证书认证的方式 非对称加密是为了保证对称密钥的安全性。 对称…

如何用.NET Core Identity实现定制化的用户身份验证系统

目录 初识标识框架(Identity) 重置密码操作 JWT基本使用 Swagger添加报文头 初识标识框架(Identity) .net core Identity是一个完整的身份验证和授权框架,它帮助开发人员处理用户的登录、注册、角色管理、权限控制以及其他与用户身份相关的操作,标…

WebSocket与Socket.io的区别

文章目录 引言一、WebSocket:原生的实时通信协议(一)WebSocket 是什么(二)WebSocket 的工作原理(三)WebSocket 的使用方法(四)WebSocket 的优势(五&#xff0…

excel里的函数技巧(持续更新中)

行转列 在 Excel 中,行转列(将一行数据转换为一列,或者将一列数据转换为一行)是一项常见的操作。你可以使用 转置 功能轻松实现这一操作。 TRANSPOSE(数组)

DeepSeek模型R1服务器繁忙,怎么解决?

在当今科技飞速发展的时代,人工智能领域不断涌现出令人瞩目的创新成果,其中DeepSeek模型无疑成为了众多关注焦点。它凭借着先进的技术和卓越的性能,在行业内掀起了一股热潮,吸引了无数目光。然而,如同许多前沿技术在发…

w~自动驾驶~合集17

我自己的原文哦~ https://blog.51cto.com/whaosoft/13269720 #FastOcc 推理更快、部署友好Occ算法来啦! 在自动驾驶系统当中,感知任务是整个自驾系统中至关重要的组成部分。感知任务的主要目标是使自动驾驶车辆能够理解和感知周围的环境元素&#…

操作系统|ARM和X86的区别,存储,指令集

文章目录 主频寄存器寄存器在硬件中的体现是什么寄存器的基本特性硬件实现寄存器类型 内存和寄存器的区别内存(Memory)和磁盘(Disk)指令的执行ARM Cortex-M3与Thumb-2指令集Thumb-2 与流水线虚拟地址指令的执行 多核CPU芯片间的通…

好好说话:深度学习扫盲

大创项目是和目标检测算法YOLO相关的,浅浅了解了一些有关深度学习的知识。在这里根据本人的理解做一些梳理。 深度学习是什么? 之前经常听到AI,机器学习,深度学习这三个概念,但是对于三者的区别一直很模糊。 AI&…

关于 IoT DC3 中设备(Device)的理解

在物联网系统中,设备(Device)是一个非常宽泛的概念,它可以指代任何能够接入系统并进行数据交互的实体。包括但不限于手机、电脑、服务器、网关、硬件设备甚至是某些软件程序等所有能接入到该平台的媒介。 内容 定义 目的 示例 …

接入 SSL 认证配置:满足等保最佳实践

前言 随着信息安全形势的日益严峻,等保(信息安全等级保护)要求成为各行业信息系统必须遵守的标准。在数据库领域,OpenGauss作为一款高性能、安全、可靠的开源关系型数据库,也需要满足等保要求,确保数据的安…

【论文阅读】Revisiting the Assumption of Latent Separability for Backdoor Defenses

https://github.com/Unispac/Circumventing-Backdoor-Defenses 摘要和介绍 在各种后门毒化攻击中,来自目标类别的毒化样本和干净样本通常在潜在空间中形成两个分离的簇。 这种潜在的分离性非常普遍,甚至在防御研究中成为了一种默认假设,我…

2024-2025年主流的开源向量数据库推荐

以下是2024-2025年主流的开源向量数据库推荐,涵盖其核心功能和应用场景: 1. Milvus 特点:专为大规模向量搜索设计,支持万亿级向量数据集的毫秒级搜索,适用于图像搜索、聊天机器人、化学结构搜索等场景。采用无状态架…

开源身份和访问管理方案之keycloak(一)快速入门

文章目录 什么是IAM什么是keycloakKeycloak 的功能 核心概念client管理 OpenID Connect 客户端 Client Scoperealm roleAssigning role mappings分配角色映射Using default roles使用默认角色Role scope mappings角色范围映射 UsersGroupssessionsEventsKeycloak Policy创建策略…

【工业场景】用YOLOv8实现火灾识别

火灾识别任务是工业领域急需关注的重点安全事项,其应用场景和背景意义主要体现在以下几个方面: 应用场景:工业场所:在工厂、仓库等工业场所中,火灾是造成重大财产损失和人员伤亡的主要原因之一。利用火灾识别技术可以及时发现火灾迹象,采取相应的应急措施,保障人员安全和…

FlinkCDC 实现 MySQL 数据变更实时同步

文章目录 1、基本介绍2、代码实战 2.1、数据源准备2.2、代码实战2.3、数据格式 1、基本介绍 Flink CDC 是 Apache Flink 提供的一个功能强大的组件,用于实时捕获和处理数据库中的数据变更。可以实时地从各种数据库(如MySQL、PostgreSQL、Oracle、Mon…