【学习笔记】理解深度学习和机器学习的数学基础:数值计算

深度学习作为人工智能领域的一个重要分支,其算法的实现和优化离不开数值计算。数值计算在深度学习中扮演着至关重要的角色,它涉及到如何在计算机上高效、准确地解决数学问题。本文将介绍深度学习中数值计算的一些关键概念和挑战,以及如何应对这些挑战。

1. 数值计算的基本挑战

在数字计算机上进行连续数学计算时,我们面临的一个基本问题是需要用有限的比特模式来表示无限多的实数。这意味着几乎所有实数在计算机中的表示都会产生一些近似误差,即舍入误差。舍入误差在多个操作中累积时可能会导致理论上的算法在实践中失败。

2. 溢出和下溢

  • 下溢:当接近零的数被舍入为零时发生。许多函数在参数为零时的行为与小正数时的行为有显著不同。例如,除以零或取零的对数都会导致问题。
  • 溢出:当大数值被近似为无穷大或负无穷大时发生。进一步的算术运算通常会将这些无穷大值转换为非数值。

解决方案:在深度学习中,softmax函数是一个非常重要的数学工具,特别是在处理多分类问题时。

1.1 Softmax函数的定义

softmax函数通常用于将一个实数向量转换为概率分布。具体来说,对于一个输入向量x=[x_{1},x_{2},...,x_{n}],softmax函数的输出是一个概率向量 y=[y_{1},y_{2},...,y_{n}]其中每个元素 y_{i} 表示输入x_{i} 对应类别的概率。softmax函数的数学定义如下:

softmax(x _{i})= \frac{exp(x_{i})}{\sum_{j=1}^{n}exp(x_{j})}

这里,exp(x)表示自然指数函数 e^{x}

1.2. Softmax函数的作用

softmax函数的主要作用是将输入向量转换为概率分布,使得输出值在0到1之间,并且所有输出值的和为1。这使得softmax函数特别适合用于多分类问题中的最后一层,因为它的输出可以直接解释为每个类别的概率。

例如,假设我们有一个输入向量x=[1,2,3],通过softmax函数转换后,输出向量y将表示每个类别的概率:

y=[\frac{exp(1)}{exp(1)+exp(2)+exp(3)},\frac{exp(2)}{exp(1)+exp(2)+exp(3)},\frac{exp(3)}{exp(1)+exp(2)+exp(3)}]

计算结果为:

y=[0.090,0.245,0.665]

这表示输入向量 x=[1,2,3] 对应的三个类别的概率分别为0.090、0.245和0.665。

1.3. Softmax函数的数值稳定性

在实际应用中,softmax函数可能会遇到数值稳定性问题,特别是当输入值的范围很大时。具体来说,当输入值 x_{i}非常大或非常小时,指数函数exp(x_{i})可能会导致溢出或下溢。

为了解决这个问题,我们通常会对输入向量进行预处理,减去输入向量的最大值。这样可以确保指数函数的输入值不会过大,从而避免溢出问题。具体来说,我们计算:

softmax(z_{i})= \frac{exp(z_{i})}{\sum_{j=1}^{n}exp(z_{j})}

其中,z=x-max(x)

例如,对于输入向量 x=[1000,1001,1002],直接计算softmax可能会导致溢出。通过减去最大值,我们得到:

z=[1000-1002,1001-1002,1002-1002]=[-2,-1,0]

然后计算softmax:

y=[\frac{exp(-2)}{exp(-2)+exp(-1)+exp(0)},\frac{exp(-1)}{exp(-2)+exp(-1)+exp(0)},\frac{exp(0)}{exp(-2)+exp(-1)+exp(0)}]

计算结果为:

y=[0.090,0.245,0.665]

这样,我们成功避免了数值稳定性问题。

1.4. Softmax函数在深度学习中的应用

softmax函数在深度学习中广泛应用于多分类问题。具体来说,它通常用于神经网络的最后一层,将神经网络的输出转换为概率分布。这样,我们可以直接将输出解释为每个类别的概率,并使用这些概率进行分类决策。

例如,在图像分类任务中,假设我们有一个神经网络,其最后一层的输出是一个10维向量,表示10个类别的得分。通过softmax函数,我们可以将这些得分转换为概率,从而确定输入图像最可能属于的类别。

softmax函数是深度学习中一个非常重要的工具,它将输入向量转换为概率分布,特别适合用于多分类问题。通过理解softmax函数的定义、作用和数值稳定性问题,我们可以更有效地应用它来解决实际问题。希望本文能帮助你更好地理解softmax函数,为进一步学习和研究打下坚实的基础。

3. 条件数问题

在深度学习中,条件数问题是一个重要的数值稳定性问题,它影响着算法的收敛速度和解的质量。条件数衡量的是函数相对于输入的小变化而快速变化的程度。条件数大的矩阵在乘以真实矩阵逆时会放大预存在的误差。这使得在实践中,误差会被数值逆过程中的误差进一步放大。

3.1. 条件数的定义

条件数是衡量矩阵在求逆或解线性方程组时对输入误差的敏感程度的指标。具体来说,对于一个矩阵 A,其条件数定义为:

k(A)=\left \| A \right \|*\left \| A^{-1} \right \|

其中,\left \| A \right \| 表示矩阵 A的范数,\left \| A^{-1} \right \|表示其逆矩阵的范数。条件数越大,矩阵越接近奇异(不可逆),求解线性方程组或求逆时的数值稳定性越差。

3.2. 条件数的影响

条件数大的矩阵在数值计算中会导致以下问题:

  • 数值不稳定性:小的输入误差可能会导致大的输出误差。
  • 求解线性方程组困难:使用迭代方法求解线性方程组时,条件数大的矩阵需要更多的迭代次数才能收敛。
  • 求逆矩阵困难:直接求逆矩阵时,条件数大的矩阵可能会导致数值不稳定,甚至无法求逆。

3.3. 解决方法

为了解决条件数问题,可以采取以下方法:

  • 预处理:对矩阵进行预处理,如使用对角线缩放或Cholesky分解,以减小条件数。
  • 正则化:在矩阵中添加一个小的正则项,如 A +\lambda I,其中 \lambda是一个小的正数,I是单位矩阵。这可以增加矩阵的对角线元素,从而减小条件数。
  • 使用数值稳定的算法:选择数值稳定的算法,如使用QR分解或SVD分解来求解线性方程组或求逆矩阵。

4. 基于梯度的优化

在深度学习中,基于梯度的优化方法是训练神经网络的核心技术。这些方法通过计算目标函数的梯度来指导参数的更新,从而最小化或最大化目标函数。本文将详细介绍基于梯度的优化方法的基本原理、常见算法以及它们在深度学习中的应用。

关键概念

  • 梯度:对于多变量函数,梯度是包含所有偏导数的向量。
  • 学习率:确定步长的正标量,可以是小常数,也可以通过线搜索确定。

4.1. 梯度的基本概念

梯度是一个多变量函数的偏导数向量,它指出了函数在某一点处增长最快的方向。对于一个函数 f(x),其中 x=[x_{1},x_{2},...,x_{n}],其梯度 \nabla f(x)定义为:

\nabla f(x)=[\frac{\partial f }{\partial x_{1}},\frac{\partial f }{\partial x_{2}},...,\frac{\partial f }{\partial x_{n}}]

4.2. 梯度下降算法

梯度下降是最基本的基于梯度的优化算法,用于最小化目标函数。其基本思想是:在每一步中,沿着梯度的反方向更新参数,因为梯度的反方向是函数值减少最快的方向。

算法步骤

  1. 初始化参数x
  2. 计算目标函数 f(x) 的梯度 \nabla f(x)
  3. 更新参数: x\leftarrow x-\alpha \nabla f(x),其中 \alpha 是学习率。
  4. 重复步骤2和3,直到收敛。

示例: 假设我们有一个简单的二次函数f(x)=x^{2},初始参数 x=10,学习率\alpha =0.1。梯度下降的更新过程如下:

  1. 初始参数:x=10
  2. 计算梯度:\nabla f(x)=2x=20
  3. 更新参数: x\leftarrow 10-0.1*20 = 8
  4. 重复上述步骤,直到 x 收敛到0。

4.3. 梯度下降的变体

为了提高梯度下降的效率和稳定性,研究人员提出了多种变体:

  • 批量梯度下降(Batch Gradient Descent):使用整个训练集计算梯度,每次更新参数时使用全局信息,收敛稳定但计算成本高。
  • 随机梯度下降(Stochastic Gradient Descent, SGD):每次只使用一个样本计算梯度,更新速度快但收敛过程可能较不稳定。
  • 小批量梯度下降(Mini-batch Gradient Descent):每次使用一个小批量的样本计算梯度,结合了批量梯度下降和随机梯度下降的优点,是实际应用中最常用的方法。

4.4 超越梯度:雅可比矩阵和海森矩阵

在深度学习和优化算法中,雅可比矩阵和海森矩阵是两个重要的数学工具,它们分别描述了函数的一阶和二阶导数信息。这些矩阵在牛顿法等二阶优化算法中起着关键作用。

4.4.1. 雅可比矩阵

雅可比矩阵是当输入和输出都是向量时,所有偏导数构成的矩阵。具体来说,对于一个函数

f:\mathbb{R}^{n}\rightarrow \mathbb{R}^{m},其雅可比矩阵 J定义为:

4.4.2. 海森矩阵

海森矩阵是二阶导数构成的矩阵,用于衡量函数的曲率。具体来说,对于一个函数 f:\mathbb{R}^{n}\rightarrow \mathbb{R}^{m},其海森矩阵 H定义为:

海森矩阵的对角线元素表示每个输入分量的二阶导数,非对角线元素表示不同输入分量之间的混合偏导数。海森矩阵的特征值决定了函数在不同方向上的曲率,最大特征值对应最大曲率,最小特征值对应最小曲率。

4.4.3. 牛顿法

牛顿法是一种利用海森矩阵信息来指导搜索的二阶优化算法。其基本思想是通过二阶泰勒级数展开来近似函数,并求解临界点。具体来说,对于一个函数 f(x),其二阶泰勒级数展开为:

f(x+h) = f(x)+\nabla f(x)\top h+\frac{1}{2}h\top H(x)h

其中,h 是搜索方向,\nabla f(x) 是梯度,H(x) 是海森矩阵。为了找到临界点,我们需要求解:

\nabla f(x) + H(x)h = 0

h= H(x)^{-1}\nabla f(x)

因此,牛顿法的更新公式为:

x\leftarrow x-H(x)^{-1}\nabla f(x)

雅可比矩阵和海森矩阵是描述函数一阶和二阶导数信息的重要工具。它们在牛顿法等二阶优化算法中起着关键作用,通过提供函数的曲率信息来指导参数更新。理解雅可比矩阵和海森矩阵的概念和应用,可以帮助我们更有效地设计和优化深度学习模型。

5. 约束优化

在某些情况下,我们需要在参数满足特定约束的条件下优化目标函数。这称为约束优化问题。常见的约束优化方法包括:

  • 拉格朗日乘数法(Lagrange Multipliers):通过引入拉格朗日乘数,将约束优化问题转化为无约束优化问题。其基本思想是构造广义拉格朗日函数:

\pounds (x,\lambda ) = f(x)+ \sum_{i=1}^{m}\lambda _{i}g_{i}(x)

  • KKT条件(Karush-Kuhn-Tucker Conditions):对于包含不等式约束的优化问题,KKT条件是必要条件,有时也是充分条件。KKT条件包括:

    • 梯度条件:广义拉格朗日函数的梯度为零。
    • 约束条件:所有约束条件满足。
    • 互补松弛条件:不等式约束的乘数与约束值的乘积为零。

6. 实例:线性最小二乘

考虑线性最小二乘问题:

min\frac{1}{2}\left \| A(x)-b \right \|^{_{2}}_{2}

其中,A 是一个 m\times n 的矩阵,b 是一个 m 维向量。如果 A 的条件数很大,直接求解这个问题可能会导致数值不稳定。为了解决这个问题,可以使用正则化方法:

min\frac{1}{2}\left \| A(x)-b \right \|^{_{2}}_{2}+\frac{\lambda }{2}\left \| x \right \|^{2}_{2}

其中,\lambda 是一个小的正数。这可以增加 x的范数,从而减小条件数,提高数值稳定性。

牛顿法

  1. 利用二阶泰勒级数展开。
  2. 一步到位找到全局最小值。

7. 总结

数值计算在深度学习中至关重要,但同时也充满挑战。通过理解和应用上述概念和方法,我们可以更有效地实现和优化深度学习算法。这些方法不仅帮助我们解决实际问题,还为深入研究和创新提供了基础。

本文能帮助你更好地理解深度学习中的数值计算,为进一步学习和研究打下坚实的基础。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/706.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JVM与Java体系结构

一、前言: Java语言和JVM简介: Java是目前最为广泛的软件开发平台之一。 JVM:跨语言的平台 随着Java7的正式发布,Java虚拟机的设计者们通过JSR-292规范基本实现在Java虚拟机平台上运行非Java语言编写的程序。 Java虚拟机根本不关心运行在其内部的程序到底是使用何…

计科高可用服务器架构实训(防火墙、双机热备,VRRP、MSTP、DHCP、OSPF)

一、项目介绍 需求分析: (1)总部和分部要求网络拓扑简单,方便维护,网络有扩展和冗余性; (2)总部分财务部,人事部,工程部,技术部,提供…

4.3.3 最优二叉树+二叉查找树

文章目录 基本概念哈夫曼方法应用:通信编码译码二叉查找树 基本概念 最优二叉树哈夫曼树 哈夫曼树:带权路径长度最短的树。 路径:一个结点到另一个结点的通路。 路径长度:路径上的分支数量。 树的路径长度:根到每个叶子…

Conda虚拟Python环境下安装包遇到的坑

明天下午要去参加Nvidia组织的一个开发者夏令营活动,按照2024 NVIDIA开发者社区夏令营环境配置指南(Win & Mac)_nvidia mac-CSDN博客提供的指引配置环境。里面建议的是用conda来配置Python虚拟环境,原本本机直接安装最直接,不过正好学习下…

MVC执行流程

(1)用户通过浏览器(客户端)向服务端(后端)发送请求,请求会被前端控制器DispatcherServlet拦截。 (2)DispatcherServlet拦截到请求后,会调用处理器映射器&…

Spring——依赖注入之p命名空间和c命名空间

p命名空间 其实就是Set注入 只不过p命名空间写法更简洁 p可以理解为 property标签的首字母p p命名空间依赖于set方法 依赖引入 使用前需要再配置文件头文件中引入p命名空间的依赖: ** xmlns:p“http://www.springframework.org/schema/p” ** 用法 在bean标签…

01-51单片机LED与独立按键

一、单片机概述 注意:个人学习笔记,里面涉及到的C语言和进程转换相关的知识在C语言部分已经写了,这里是默认都会的状态学习单片机。 1.什么是单片机 单片机,英文Micro Controller Unit,简称MCU。其内部集成了CPU、R…

Day04-后端Web基础——Maven基础

目录 Maven课程内容1. Maven初识1.1 什么是Maven?1.2 Maven的作用1.2.1 依赖管理1.2.2 项目构建1.2.3 统一项目结构 2. Maven概述2.1 Maven介绍2.2 Maven模型2.3 Maven仓库2.4 Maven安装2.4.1 下载2.4.2 安装步骤 3. IDEA集成Maven3.1 配置Maven环境3.1.2 全局设置 3.2 Maven项…

spring boot学习第二十三篇:Spring Boot集成RocketMQ

前置条件先安装好RocketMQ 希望在Window10安装rocketMQ并简单使用&#xff0c;可以参考如下文章&#xff1a; Window10安装rocketMQ并简单使用-CSDN博客 1、pom.xml文件里面加上依赖 <dependency><groupId>org.apache.rocketmq</groupId><artifactId&…

【Docker】入门教程

目录 一、Docker的安装 二、Docker的命令 Docker命令实验 1.下载镜像 2.启动容器 3.修改页面 4.保存镜像 5.分享社区 三、Docker存储 1.目录挂载 2.卷映射 四、Docker网络 1.容器间相互访问 2.Redis主从同步集群 3.启动MySQL 五、Docker Compose 1.命令式安装 …

Go语言之路————go环境的初始化

Go语言之路————go环境的初始化 前言一、Go的安装二、环境配置三、初始化一个新项目四、常用的一些指令 前言 我是一名多年Java开发人员&#xff0c;因为工作需要现在要学习go语言&#xff0c;Go语言之路是一个系列&#xff0c;记录着我从0开始接触Go&#xff0c;到后面能正…

【C语言系列】函数递归

函数递归 一、递归是什么&#xff1f;1.1尾递归 二、递归的限制条件三、递归举例3.1举例一&#xff1a;求n的阶乘3.2举例二&#xff1a;顺序打印一个整数的每一位 四、递归与迭代4.1举例三&#xff1a;求第n个斐波那契数 五、拓展学习青蛙跳台问题 一、递归是什么&#xff1f; …

编程题-二分查找

题目&#xff1a; 给定一个 n 个元素有序的&#xff08;升序&#xff09;整型数组 nums 和一个目标值 target &#xff0c;写一个函数搜索 nums 中的 target&#xff0c;如果目标值存在返回下标&#xff0c;否则返回 -1 解法一&#xff08;循环遍历查找&#xff09;&#xff…

关于大数据的基础知识(一)——定义特征结构要素

成长路上不孤单&#x1f60a;&#x1f60a;&#x1f60a;&#x1f60a;&#x1f60a;&#x1f60a; 【14后&#x1f60a;///计算机爱好者&#x1f60a;///持续分享所学&#x1f60a;///如有需要欢迎收藏转发///&#x1f60a;】 今日分享关于大数据的基础知识&#xff08;一&a…

【git】-2 分支管理

目录 一、分支的概念 二、查看、创建、切换分支 1、查看分支-git branch 2、创建分支- git branch 分支名 3、切换分支- git checkout 分支名 三、git指针 -实现分支和版本间的切换 四、普通合并分支 git merge 文件名 五、冲突分支合并 ​​​​​​【git】-初始gi…

Maven核心插件之maven-resources-plugin

前言 Maven 插件是 Maven 构建系统的重要组成部分&#xff0c;它们为 Maven 提供了丰富的功能和扩展能力&#xff0c;使得 Maven 不仅是一个构建工具&#xff0c;更是一个强大的项目管理平台。在 Maven 项目中&#xff0c;插件的使用通常通过配置 pom.xml 文件来完成。每个插件…

[云原生之旅] K8s-Portforward的另类用法, 立省两个端口

前言 此方法适用于Pod不需要大量连接的情况: 有多个pod在执行任务, 偶尔需要连接其中一个pod查看进度/日志;对pod执行一个脚本/命令; 不适用于大量连接建立的情况: pod启的数据库服务;pod启的Api服务;pod启的前端服务;pod启的Oss服务; Portforward简介 Portforward就是端…

MySQL进阶突击系列(05)突击MVCC核心原理 | 左右护法ReadView视图和undoLog版本链强强联合

2024小结&#xff1a;在写作分享上&#xff0c;这里特别感谢CSDN社区提供平台&#xff0c;支持大家持续学习分享交流&#xff0c;共同进步。社区诚意满满的干货&#xff0c;让大家收获满满。 对我而言&#xff0c;珍惜每一篇投稿分享&#xff0c;每一篇内容字数大概6000字左右&…

【微服务】面试 7、幂等性

幂等性概念及场景 概念&#xff1a;多次调用方法或接口不改变业务状态&#xff0c;重复调用结果与单次调用一致。例如在京东下单&#xff0c;多次点击提交订单只能成功一次。场景&#xff1a;包括用户重复点击、网络波动导致多次请求、mq 消息重复消费、代码中设置失败或超时重…

漏洞扫描工具

完整源码项目包获取→点击文章末尾名片&#xff01; 漏洞检测 该模块主要是对目标Web系统进行安全漏洞扫描&#xff0c;包括SQL注入、跨站脚本攻击&#xff08;XSS&#xff09;、弱密码、中间件漏洞。中间件漏洞扫描包括对Weblogic、Struts2、Tomcat 、Jboss、Drupal、Nexus的已…