基于传统检测算法hog+svm实现图像多分类

直接上效果图:

 

 代码仓库和视频演示b站视频005期:

到此一游7758258的个人空间-到此一游7758258个人主页-哔哩哔哩视频

代码展示:

数据集在datasets文件夹下

运行01train.py即可训练

训练结束后会保存模型在本地

运行02pyqt.py会有一个可视化的界面,通过点击按钮加载图片识别。

 

科普相关知识:

传统图像分类检测算法通常包括以下几种:

  1. 支持向量机(SVM):SVM是一种监督学习算法,用于二分类和多分类问题。它通过找到一个最优超平面来将不同类别的数据分开。

  2. k最近邻(K-Nearest Neighbors,KNN):KNN是一种简单有效的非参数算法。对于一个未知样本,KNN通过计算其与训练集中最近的k个样本的距离,然后根据这些近邻样本的标签来进行分类。

  3. 决策树(Decision Trees):决策树是一种树状结构的分类模型,通过在特征空间中递归划分数据,最终将数据分到不同的类别。

  4. 随机森林(Random Forest):随机森林是一种集成学习方法,它结合多个决策树来进行分类,并通过投票或平均等方式得出最终结果。

  5. AdaBoost(自适应增强算法):AdaBoost是一种集成学习算法,通过迭代地训练一系列弱分类器,并根据它们的表现进行加权,从而得到一个强分类器。

  6. 感知器(Perceptron):感知器是一种最早的神经网络模型,用于二分类问题。它通过对输入进行加权求和,并经过一个阈值函数来进行分类。

  7. 尺度不变特征变换(Scale-Invariant Feature Transform,SIFT):SIFT是一种用于图像特征提取的算法,通过寻找图像中的局部特征点,并提取与尺度无关的特征描述符。

  8. 主成分分析(Principal Component Analysis,PCA):PCA是一种降维算法,可以用于将高维特征转换为低维特征,以减少数据的复杂性。

这些传统图像分类检测算法在一些简单的图像分类任务上表现良好,但随着深度学习的发展,卷积神经网络(CNN)等深度学习算法在图像分类领域取得了显著的进展,特别是在大规模和复杂数据集上的分类任务中。

PyQt 是一个用于开发图形用户界面(GUI)的Python绑定库。它将Qt框架与Python编程语言结合起来,使开发者可以使用Python语言创建功能强大、跨平台的GUI应用程序。

Qt 是一种流行的C++开发框架,提供了丰富的GUI组件和工具,可用于构建各种类型的应用程序,包括桌面应用程序、移动应用程序和嵌入式系统。PyQt允许开发者通过简单而直观的Python语法来利用Qt的功能,从而加快应用程序的开发速度。

PyQt提供了一系列模块和类,使开发者能够创建窗口、按钮、文本框、列表框等各种GUI元素,并为这些元素添加交互性和事件处理。此外,PyQt还支持多线程、数据库连接、网络通信等功能,使开发者能够构建复杂的GUI应用程序。

总之,PyQt是一个强大的工具,使开发者能够使用Python语言开发跨平台的GUI应用程序,并利用Qt框架提供的丰富功能和工具。

HOG(Histogram of Oriented Gradients)是一种计算机视觉中常用的特征描述子。它被广泛应用于目标检测和人体姿态估计等任务。

HOG特征描述子通过对图像进行局部梯度计算,提取了图像中不同区域的方向梯度信息。具体而言,HOG将图像划分为小的局部块,并计算每个块内像素点的梯度方向和强度。然后,将这些局部块的梯度方向信息统计到直方图中,形成一个特征向量表示该块的特征。最后,将所有块的特征向量拼接在一起,形成整个图像的HOG特征描述子。

HOG特征具有以下特点:

  • 对于光照变化、阴影以及一定程度的几何变换具有一定的鲁棒性。
  • 通过统计局部块的梯度方向信息,能够捕捉到物体的边缘和纹理特征。
  • HOG特征描述子维度相对较低,便于快速计算和存储。

在目标检测领域,HOG特征通常与机器学习算法(例如支持向量机)结合使用,通过训练模型来识别图像中的目标。HOG特征在人体检测方面表现良好,尤其在行人检测上应用广泛,并为其他目标检测任务提供了一种有效的特征表示方法。

SVM(Support Vector Machine)是一种常见的监督学习算法,广泛应用于模式分类和回归任务中。

SVM的目标是找到一个最优的超平面,将不同类别的样本点在特征空间中尽可能地分开。超平面可以被看作是一个决策边界,用于对新的未标记数据进行分类。SVM通过选择支持向量(距离超平面最近的训练样本点)来确定分类边界,从而实现对样本的有效分类。

SVM具有以下特点:

  • 可以处理高维特征空间,并且在处理高维数据时表现良好。
  • 通过引入核函数,可以将低维非线性可分问题映射到高维空间进行线性分类,从而提高分类准确率。
  • SVM具有较强的鲁棒性,对于一些噪声和异常值具有一定的容忍度。
  • 在训练过程中,SVM只使用支持向量,大大减少了存储和计算开销。

SVM的应用包括图像分类、文本分类、生物信息学、人脸识别等领域。它在机器学习中被认为是一种经典的方法,因其稳定性和分类性能而备受关注。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/73377.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

golang单元测试及mock总结

文章目录 一、前言1、单测的定位2、vscode中生成单测 二、构造测试case的注意事项1、项目初始化2、构造空interface{}3、构造结构体的time.Time类型4、构造json格式的test case 三、运行单测文件1、整体运行单测文件2、运行单个单测文件报错(1)command-l…

应用案例|基于3D视觉的高反光金属管件识别系统解决方案

Part.1 项目背景 在现代制造业中,高反光金属管件的生产以及质量的把控是一个重要的挑战。传统的2D视觉系统常常难以准确地检测和识别高反光金属管件,因为它们的表面特征不够明显,容易受到光照和阴影的干扰。为了应对这个问题,基于…

华为数通HCIP-IGMP(网络组管理协议)

IGMP(网络组管理协议) 作用:维护、管理最后一跳路由器以及组播接收者之间的关系; 应用:最后一跳路由器以及组播接收者之间; 原理:当组播接收者需要接收某个组别的流量时,会向最后…

kafka 理论知识

1 首先要了解kafka是什么 Kafka是一个分布式的消息订阅系统 1.1 kafka存储消息的过程 消息被持久化到一个topic中,topic是按照“主题名-分区”存储的,一个topic可以分为多个partition,在parition(分区)内的每条消息都有一个有序的id号&am…

高并发与性能优化的神奇之旅

作为公司的架构师或者程序员,你是否曾经为公司的系统在面对高并发和性能瓶颈时感到手足无措或者焦头烂额呢?笔者在出道那会为此是吃尽了苦头的,不过也得感谢这段苦,让笔者从头到尾去探索,找寻解决之法。 目录 第一站…

LabVIEW实现三相异步电机磁通模型

LabVIEW实现三相异步电机磁通模型 三相异步电动机由于经济和出色的机电坚固性而广泛用于工业化应用。这台机器的设计和驱动非常简单,但在控制扭矩和速度方面,它隐藏了相当大的功能复杂性。通过数学建模,可以理解机器动力学。 基于微分方程的…

uniApp 插件 Fvv-UniSerialPort 使用实例

接上一篇 uniApp 对接安卓平板刷卡器, 读取串口数据 , 本文将详细介绍如何使用插件读取到串口数据 原理 通过uniApp 插件读取设备串口数据, 解析后供业务使用; 步骤 创建uniApp 项目;添加插件 安卓串口通信 Fvv-UniSerialPort 安卓串口通信 Fvv-UniSerialPort - DCloud 插件…

二重积分1

目录 二重积分 二重积分的性质 ​编辑 中值定理 二重积分的计算 方法1:利用直角坐标计算 方法2:利用极坐标进行计算 适用于极坐标的二重积分的特征 对称性和奇偶性的应用 题目 例题1: 题目2: 题目3: 题目4&#x…

Vue3 Vite electron 开发桌面程序

Electron是一个跨平台的桌面应用程序开发框架,它允许开发人员使用Web技术(如HTML、CSS和JavaScript)构建桌面应用程序,这些应用程序可以在Windows、macOS和Linux等操作系统上运行。 Electron的核心是Chromium浏览器内核和Node.js…

Vol的学习

首先学习基础用法 1.查看系统基本信息 vol.py -f 路径 imageinfo 2.查看进程命令行 vol.py -f 路径 --profile系统版本 cmdline vol.py -f 路径 --profile版本 cmdscan 3.查看进程信息 vol.py -f 路径 --profile系统 pslist 通过树的方式返回 vol.py -f 路径 --profile系统…

HDFS架构刨析

HDFS架构刨析 概述HDFS架构图整体概述主角色:namenodefsimage内存元数据镜像文件edits log(Journal)编辑日志 从角色:datanode主角色辅助角色:secondarynamenode 重要特性主从架构分块存储机制副本机制namespace元数据…

新一代图像合成模型:Stable Diffusion XL(SDXL)上线!

几个使用Stable Diffusion XL 1.0生成的图像示例。 新的SDXL 1.0发布允许在本地计算机上运行的高分辨率人工智能图像合成。 周三,Stability AI发布了其下一代开源权重人工智能图像合成模型Stable Diffusion XL 1.0(SDXL)。它可以根据文本描述…

STM32CUBUMX配置RS485 modbus STM32(从机)亲测可用

———————————————————————————————————— ⏩ 大家好哇!我是小光,嵌入式爱好者,一个想要成为系统架构师的大三学生。 ⏩最近在开发一个STM32H723ZGT6的板子,使用STM32CUBEMX做了很多驱动&#x…

【VUE】解决图片视频加载缓慢/首屏加载白屏的问题

1 问题描述 在 Vue3 项目中,有时候会出现图片视频加载缓慢、首屏加载白屏的问题 2 原因分析 通常是由以下原因导致的: 图片或视频格式不当:如果图片或视频格式选择不当,比如选择了无损压缩格式,可能会导致文件大小过大…

青蛙过河 [递推法]

青蛙过河 [递推法] 题目描述输入输出样例输入样例输出样例 递推解答A C 代码 题目描述 有一条河,左边一个石墩( A A A区)上有编号为 1 , 2 , 3 , 4 , … , n 1,2,3,4&am…

Django实现音乐网站 ⑵

使用Python Django框架制作一个音乐网站,在系列文章1的基础上继续开发,本篇主要是后台歌手表模块开发。 目录 表结构设计 歌手表(singer)结构 创建表模型 设置图片上传路径 创建上传文件目录 生成表迁移 执行创建表 后台管…

刷题笔记 day5

力扣 202 快乐数 首先来分析什么样的数是快乐数, 解题思路: 1)定义快慢指针 ; 2)快指针走两步,慢指针走一步 ;3)两个指针相遇时判断相遇的数值是否为1。 怎样处理 取各分位数的平…

软考A计划-系统集成项目管理工程师-信息文档和配置管理-上

点击跳转专栏>Unity3D特效百例点击跳转专栏>案例项目实战源码点击跳转专栏>游戏脚本-辅助自动化点击跳转专栏>Android控件全解手册点击跳转专栏>Scratch编程案例点击跳转>软考全系列点击跳转>蓝桥系列 👉关于作者 专注于Android/Unity和各种游…

【计算机视觉中的 GAN 】如何稳定GAN训练(3)

一、说明 在上一篇文章中,我们达到了理解未配对图像到图像翻译的地步。尽管如此,在实现自己的超酷深度GAN模型之前,您必须了解一些非常重要的概念。如本文所提的GAN模型新成员的引入:Wasserstein distance,boundary eq…

四、JVM-对象内存模型

Java对象内存模型 一个Java对象在内存中包括3个部分:对象头、实例数据和对齐填充 数据 内存 – CPU 寄存器 -127 补码 10000001 - 11111111 32位的处理器 一次能够去处理32个二进制位 4字节的数据 64位操作系统 8字节 2的64次方的寻址空间 指针压缩技术 JDK1.6出…