开源元数据管理平台Datahub最新版本0.10.5——安装部署手册(附离线安装包)

大家好,我是独孤风。

开源元数据管理平台Datahub近期得到了飞速的发展。已经更新到了0.10.5的版本,来咨询我的小伙伴也越来越多,特别是安装过程有很多问题。本文经过和群里大伙伴的共同讨论,总结出安装部署Datahub最新版本的部署手册,希望能帮助到大家。

文章较长,建议收藏点赞在看后,再仔细阅读。具体安装问题,以及安装包获取,可以在文末申请加入Datahub学习群进行咨询。

本文档版权归大数据流动所有,抄袭必究。

正文共: 6173字 19图

预计阅读时间: 16分钟

正文开始:

本文所使用操作系统是CentOS7。这也是大多数生产机器的选择。

本文所选择的Python的版本为3.8.3,Docker版本为20.10.0,都可以很好的支持Datahub的安装。

Datahub下载的最新0.10.5版本,这是目前功能最完善也最稳定的版本。考虑到有些同学没有类似的CentOS环境,本文将从虚拟机搭建,CentOS 7安装,Python3安装, Docker安装,Datahub安装,启动Datahub六部分来进行,并将安装过程中遇到的问题进行整理。文章目录结构如下:

4db0cbf724f5014aadb28765d61d7039.png

一、虚拟机搭建

要想有一个本地稳定的调试环境,就必须安装虚拟机,本文使用的是Win10系统的Hyper-V管理器,也 是一个系统自带的虚拟机工具,非常的方便。安装之前先下载一个CentOS镜像,我这边用的是CentOS-7-x86_64-DVD-2009.iso。可以去官网下载:https://www.centos.org/download/。 网速不好的同学可以加入Datahub学习交流群,获取Datahub所有安装资料下载包。加入方式,关注 大数据流动,后台回复 “加群”。首先,打开Hyper-V管理器。可以搜索一下,有的话直接打开。没有的话是系统默认没有开启这个服务。

36dff5c0c6f0d5ce96ae01aabdd32e33.png

在这里选择把Hyper-V的管理工具和平台都打开。

8f1272703e50fac8d4aa5d6452d135bf.png

然后我们打开Hyper-V管理工具,新建一个虚拟机。需要指定名称和位置,需要保证安装位置有足够大的空间。

选择虚拟机代数,选第一代。分配内存,这个后面也是可以修改的。考虑到Datahub的基本需要,还有电脑的配置,我这里选择 4096MB。(补充一下,datahub建议内存就是4GB,所以这里我后来做了修改,建议5GB以上)

f9680d71094afec93891c3937ef9d4f1.png

随后选好硬盘,网络。导入镜像。

fc857e3f5d2c4992d4966cdaa0d8ebc3.png

完成虚拟机创建。

这样的话,虚拟机安装完成,我们可以有一个稳定的环境来运行datahub了。但是目前这个虚拟机里边是没有操作系统的,需要安装。

二、CentOS 7安装

启动Hyper-V管理器。打开刚刚新建的虚拟机,然后点击启动。选择 install centos 7 正常安装 CentOS 7 的流程。

6e33b5cfb9da913d1b6d05e95e751fa9.png

随后选择语言,时区等等。安装过程中设置一下密码。并牢记。

84e4cb534ae57bdd038d41a74cde77b5.png

安装完成之后点击重启。CentOS7 安装完成,可以正常使用了!

7fe39d4009ae4ccf187ab971e8394997.png

三、Python3安装

由于CentOS7默认的python环境是python2,这里我们需要去安装一下Python3,来支持Datahub。

可以通过如下路径下载,并解压Python3安装包。网络不佳的同学,可以直接用我的安装包,已经下载好。

wget https://www.python.org/ftp/python/3.8.3/Python-3.8.3.tgz
tar -zxvf Python-3.8.3.tgz

随后需要下载一堆依赖,不然安装Python3会报各种问题。

yum install -y zlib-devel bzip2-devel \
openssl-devel ncurses-devel epel-release gcc gcc-c++ xz-devel readline-devel \
gdbm-devel sqlite-devel tk-devel db4-devel libpcap-devel libffi-devel

随后进行Python3的编译,如果包都安装完全,不会出问题。

mkdir /usr/local/python3
cd Python-3.8.3
./configure --prefix=/usr/local/python3
make && make install

有如下显示证明安装成功。有一点错误都是不对的,赶紧解决。

8ed883c059845f99cc68faaf79afefb5.png

make install此过程较漫长,耐心等待,此时python3已经安装成功,我们进行一些基本设置就可以了。

6d07172f8590706807f62b22a3350c9f.png

修改系统默认python指向,默认pip指向,注意,这样改完会系统yum不可用,需要修复一下。

rm -rf /usr/bin/python ln -s /usr/local/python3/bin/python3 /usr/bin/python rm -rf /usr/bin/pip ln -s /usr/local/python3/bin/pip3 /usr/bin/pip python -V pip -V

d62f621a339a3bf4990a6bed6e66ad34.png

四、 Docker安装

首先下载docker安装包,同样,网络不佳的同学,可以直接用我的安装包,已经下载好。上传上去就行了。

#下载docker-20.10.0包
https://download.docker.com/linux/static/stable/x86_64/docker-20.10.0.tgz
#下载docker-compose对应系统的包
https://github.com/docker/compose/releases/download/1.29.1/docker-compose-Linuxx86_64

解压安装docker。

tar -zxvf docker-20.10.0.tgz
#将解压出来的docker文件内容移动到 /usr/bin/ 目录下
cp docker/* /usr/bin/
#查看docker版本
docker version
#查看docker信息
docker info

配置docker。

配置Docker开机自启动服务
#添加docker.service文件
vi /etc/systemd/system/docker.service
#按i插入模式,复制如下内容:
[Unit]
Description=Docker Application Container Engine
Documentation=https://docs.docker.com
After=network-online.target firewalld.service
Wants=network-online.target
[Service]
Type=notify
# the default is not to use systemd for cgroups because the delegate issues
still
# exists and systemd currently does not support the cgroup feature set required
# for containers run by docker
ExecStart=/usr/bin/dockerd
ExecReload=/bin/kill -s HUP $MAINPID
# Having non-zero Limit*s causes performance problems due to accounting overhead
# in the kernel. We recommend using cgroups to do container-local accounting.
LimitNOFILE=infinity
LimitNPROC=infinity
安装docker-compose
将docker-compose上传到服务器/usr/local/bin/里面:
LimitCORE=infinity
# Uncomment TasksMax if your systemd version supports it.
# Only systemd 226 and above support this version.
#TasksMax=infinity
TimeoutStartSec=0
# set delegate yes so that systemd does not reset the cgroups of docker
containers
Delegate=yes
# kill only the docker process, not all processes in the cgroup
KillMode=process
# restart the docker process if it exits prematurely
Restart=on-failure
StartLimitBurst=3
StartLimitInterval=60s
[Install]
WantedBy=multi-user.target
#添加文件可执行权限
chmod +x /etc/systemd/system/docker.service
#重新加载配置文件
systemctl daemon-reload
#启动Docker
systemctl start docker
#查看docker启动状态
systemctl status docker
#查看启动容器
docker ps
#设置开机自启动
systemctl enable docker.service
#查看docker开机启动状态 enabled:开启, disabled:关闭
systemctl is-enabled docker.service

安装docker-compose

#下载docker-compose到/usr/local/bin/目录。
# 给docker compose 目录授权
sudo chmod +x /usr/local/bin/docker-compose
# 查看一下version,显示有版本号那就说明安装成功了
docker-compose version

version一下,有这样的显示就对了。

68544520eb1ccb35c90389132e8b6517.png

五、Datahub安装

依赖安装,Datahub需要依赖大量的python包,好在pip都有集成,可以很方便安装。当然网速是个问题,建议选择合适的源。

先检查环境

python3 -m pip uninstall datahub acryl-datahub || true # sanity check - ok if it
fails

检查环境 收到这样的提示说明没有问题。

WARNING: Skipping datahub as it is not installed.

安装依赖包。

pip3 install acryl-datahub==0.10.5

c2a39c3e16bf0b95feb4190cc208862d.png

查看版本情况。

python -m datahub version

ebe4be4aa1715802f18f09e0b4bc0d80.png

显示为0.10.5.

镜像下载,接下来是下载镜像,我们知道datahub的组件依赖较多,一共有11个,所以需要用docker先把镜像pull下来。

镜像较大,一共十几个GB,需要耐心下载。镜像是通用的,可以直接load进去,也可以用下载好的镜像包。我这边已上传云盘。

查看下配置文件,在github中 linkedin/datahub/master/docker/quickstart/docker-composewithout-neo4j.quickstart.yml。

这里详细记录了镜像的版本及获取。

1229b60deef3b48f6f7047eee9851340.png

随后进行镜像拉取。

docker pull confluentinc/cp-kafka:7.4.0
docker pull confluentinc/cp-zookeeper:7.4.0 
docker pull elasticsearch:7.10.1
docker pull mysql:5.7
。。。

一定按照配置文件耐心下载下来。

最后执行docker image,要保证镜像都是完整的。

f5a044c94bfda57b2f0624afa7bfde36.png

六、启动Datahub

万事具备,就差启动。

启动命令如下,这个过程可能会卡住,因为要去github拉那个配置来启动。

python -m datahub docker quickstart 
docker-compose -p datahub

所以我们可以选择本地读配置文件启动的方式。

python -m datahub docker quickstart --quickstart-compose-file ./docker-composewithout-neo4j.quickstart.yml
docker-compose -p datahub -f ./docker-compose-without-neo4j.quickstart.yml up -

如果启动失败,需要排查下镜像是不是有问题。我在这块遇到了很多坑~ 由于网络问题,很有可能导致打的tar包是一个不完整的包。可以单独启动容器调试一下,命令如下:

docker run --name kafka -d confluentinc/cp-kafka:7.4.0

还有一些docker命令

查看启动的容器
docker ps
停止容器
docker stop confluentinc/cp-kafka:7.4.0

执行命令后,如果没有报错证明没有问题。

访问IP:9002,启动成功啦!!

323ef452937d712ec4c74030aab2c7c1.png

爬坑记录

1、ImportError: urllib3 v2.0 only supports OpenSSL 1.1.1+, currently the 'ssl' module is compiled with 'OpenSSL

urllib3在导入时发生ImportError,是由于urllib3 v2.0只支持OpenSSL 1.1.1及以上版本,而当前系统中的ssl模块使用的OpenSSL版本低于1.1.1导致的。

如何解决 解决方法有以下几种:

  1. 升级OpenSSL到1.1.1或更高版本。

  2. 使用urllib3 v1.x版本。

2、ERROR: Cannot connect to the Docker daemon at unix:///var/run/docker.sock

docker没有正常启动,按照docker自启动进行配置。

3、提示 Fetching docker-compose file https://raw.githubusercontent.com/datahub-project/datahub/master/docker/quickstart/docker-compose-without-neo4j.quickstart.yml from GitHub 卡住了

连接github网络发生问题,可以下载下来配置文件,或者用我给大家准备好的。

4、requests.exceptions.SSLError: HTTPSConnectionPool(host='raw.githubusercontent.com', port=443): Max retries exceeded with url: /datahub-project/datahub/master/docker/quickstart/docker-compose-without-neo4j.quickstart.yml

同样的问题,重试次数太多,连接github网络发生问题。

5、安装python报错,miss 。。。

大概率是依赖包没安装全,用yum命令重新安装下。


加群方式

关注大数据流动,后台回复“Datahub学习资料”,申请加入Datahub学习资料群。

先声明一下,为防止抄袭和广告党,加入学习群收费。加入群后禁止一切广告,群里定期分享Datahub相关资料,并将长期分享Datahub各版本安装包,一次进群,获得永久权益。

但如果是学生党,不勉强,备注一下,可以直接申请进入。

感谢大家的支持,非诚勿扰~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/73891.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java电子招投标采购系统源码-适合于招标代理、政府采购、企业采购、等业务的企业 tbms

​ 功能描述 1、门户管理:所有用户可在门户页面查看所有的公告信息及相关的通知信息。主要板块包含:招标公告、非招标公告、系统通知、政策法规。 2、立项管理:企业用户可对需要采购的项目进行立项申请,并提交审批,查…

14:00面试,14:06就出来了,问的问题有点变态。。。

从小厂出来,没想到在另一家公司又寄了。 到这家公司开始上班,加班是每天必不可少的,看在钱给的比较多的份上,就不太计较了。没想到5月一纸通知,所有人不准加班,加班费不仅没有了,薪资还要降40%,…

2023年第四届“华数杯”数学建模思路 - 案例:最短时间生产计划安排

文章目录 0 赛题思路1 模型描述2 实例2.1 问题描述2.2 数学模型2.2.1 模型流程2.2.2 符号约定2.2.3 求解模型 2.3 相关代码2.4 模型求解结果 0 赛题思路 (赛题出来以后第一时间在CSDN分享) 最短时间生产计划模型 该模型出现在好几个竞赛赛题上&#x…

Jenkins Gerrit Trigger实践

1.创建Gerrit Trigger 2.jenkins master节点生成gerrit用户的密钥 这里的用户名得写登录gerrit后个人信息中的 Username 3.gerrit 配置刚刚jenkins生成密钥的公钥 4.gerrit 用户加入群组 不加这个群组,下一步测试就会报错“User aeshare has no capability conn…

代码随想录算法训练营day53

文章目录 Day53 最长公共子序列题目思路代码 不相交的线题目思路代码 最大子序和题目思路代码 Day53 最长公共子序列 1143. 最长公共子序列 - 力扣(LeetCode) 题目 给定两个字符串 text1 和 text2,返回这两个字符串的最长公共子序列的长度…

2023华数杯数学建模C题思路代码 母亲身心健康影响

C 题 母亲身心健康对婴儿成长的影响 母亲是婴儿生命中最重要的人之一,她不仅为婴儿提供营养物质和身体保护, 还为婴儿提供情感支持和安全感。母亲心理健康状态的不良状况,如抑郁、焦虑、 压力等,可能会对婴儿的认知、情感、社会行…

投资圈爆火的文心杯创业大赛,大模型三大趋势值得关注!

“百模大战”打响,掀起大模型领域“创业热潮”。今年5月31日,百度启动“文心杯”创业大赛(后简称“大赛”),不到1个月报名时间,吸引近1000个项目激烈角逐,在知名投资人和AI专家的权威评审和层层…

【LeetCode】141. 环形链表 进阶题142. 环形链表 II

141. 环形链表 这道题还是用经典的快慢指针法来做。每次让快的指针走两步,慢的走一步。如果有环,则绝对会在环内的某一节点相遇。思想跟物理知识有点关系,如果有环,则在相对运动过程中,可以相当于慢指针静止&#xff0…

Rust ESP32C3开发

Rust ESP32C3开发 系统开发逐步使用Rust语言,在嵌入式领域Rust也逐步完善,本着学习Rust和ESP32的目的,搭建了ESP32C3的环境,过程中遇到了不少问题,予以记录。 ESP-IDF开发ESP32 这一部分可跳过,是使用C开…

MySQL做分布式锁

分布式锁mysql实现方式 方式1:唯一索引 创建锁表,内部存在字段表示资源名及资源描述,同一资源名使用数据库唯一性限制。多个进程同时往数据库锁表中写入对某个资源的占有记录,当某个进程成功写入时则表示其获取锁成功其他进程由于…

2.4G芯片XL2408开发板,SOP16封装,芯片集成1T 8051内核单片机

XL2408开发板可用于2.4G芯片XL2408开发板的开发调试。XL2408烧录仿真需要使用WS_LINK。XL2408开发板烧录仿真需要接4根线:PA13:DIO,PA14:CLK,VCC,GND。 XL2408芯片集成射频收发机、频率收生器、晶体振荡器、调制解调器等功能模块,…

Linux【网络编程】之深入理解TCP协议

Linux【网络编程】之深入理解TCP协议 TCP协议TCP协议段格式4位首部长度---TCP报头长度信息 TCP可靠性(确认应答)&& 提高传输效率确认应答(ACK)机制32位序号与32为确认序号 16位窗口大小---自己接收缓冲区剩余空间的大小16位紧急指针---紧急数据处…

单元测试之- mock工具mockito

常用的mock工具mockito 在编写单元测试时,需要mock依赖的对象,减少依赖对象对测试的影响,Mocktio是常用的mock工具之一,那么mockito提供了哪些功能呢? Mock对象的创建和配置:Mockito可以通过简单的语法创建…

Spring MVC异常处理【单个控制异常处理器、全局异常处理器、自定义异常处理器】

目录 一、单个控制器异常处理 1.1 控制器方法 1.2 编写出错页面 1.3 测试结果 二、全局异常处理 2.1 一个有异常的控制器类 2.2 全局异常处理器类 2.3 测试结果 三、自定义异常处理器 3.1 自定义异常处理器 3.2 测试结果 往期专栏&文章相关导读 1. Maven系列…

git使用(由浅到深)

目录流程图 1. 分布式版本控制与集中式版本控制 1.1 集中式版本控制 集中式版本控制系统有:CVS和SVN它们的主要特点是单一的集中管理的服务器,保存所有文件的修订版本;协同开发人员通过客户端连接到这台服务器,取出最新的文件或者提交更新…

【CSS】3D卡片效果

效果 index.html <!DOCTYPE html> <html><head><title> Document </title><link type"text/css" rel"styleSheet" href"index.css" /></head><body><div class"card"><img…

在自定义数据集上微调Alpaca和LLaMA

本文将介绍使用LoRa在本地机器上微调Alpaca和LLaMA&#xff0c;我们将介绍在特定数据集上对Alpaca LoRa进行微调的整个过程&#xff0c;本文将涵盖数据处理、模型训练和使用流行的自然语言处理库(如Transformers和hugs Face)进行评估。此外还将介绍如何使用grado应用程序部署和…

【C++】开源:跨平台轻量日志库easyloggingpp

&#x1f60f;★,:.☆(&#xffe3;▽&#xffe3;)/$:.★ &#x1f60f; 这篇文章主要介绍跨平台轻量日志库easyloggingpp。 无专精则不能成&#xff0c;无涉猎则不能通。。——梁启超 欢迎来到我的博客&#xff0c;一起学习&#xff0c;共同进步。 喜欢的朋友可以关注一下&am…

RL — 强化学习技巧

一、说明 深度学习&#xff08;DL&#xff09;很难训练&#xff0c;强化学习&#xff08;RL&#xff09;要差得多。在早期开发中&#xff0c;遵循与 DL 相同的策略&#xff1a;保持简单&#xff01;消除任何妨碍您的花里胡哨的东西&#xff0c;并将不确定性降至最低。具体到RL&…

git clone 登录 github

git clone 登录 github 目录概述需求&#xff1a; 设计思路实现思路分析1.github 设置setting2.输入passwd 参考资料和推荐阅读 Survive by day and develop by night. talk for import biz , show your perfect code,full busy&#xff0c;skip hardness,make a better result…