风辞远的科技茶屋:来自未来的信号枪

79639c60c13df912d55f77d1b6c43167.jpeg

很久之前,有位朋友问我,现在科技资讯这么发达了,你们还写啊写做什么呢?

我是这么看的。最终能够凝结为资讯的那个新闻点,其实是一系列事情最终得出的结果,而这个结果又会带来更多新的结果。其中这些“得出”与“带来”的过程,都是藏在资讯之后的,是隐身的、暧昧的。

如果我们仅仅希望知道个大概,对科技内容的预期仅仅是三五知己闲谈时当个佐料,那么发达的资讯当然足够。但如果你希望以科技为学业、为事业,使之成为自己能够理解和掌握的能力,那么就需要对科技资讯有一个识别、思辨、预判的过程,这些就是脑极体希望提供给大家的。

ba140ca2ae3deed3121c3bc6e30fb374.png

人类是具有高效想象力的动物,喜欢基于看到的信号来想象全貌。但信号枪下面到底发生了什么,将要发生什么,经常会有点复杂,并且跟我们想象的不太一样。就像诸侯看到狼烟,以为已经形势危急,其实不过是褒姒得到个小礼物。

科技资讯有时候就像是这种信号枪,我们不仅要能看到,还需要甄别和分析。

今天就来选几个新闻,跟大家聊聊信号枪之下,关于未来的不确定性。

要灭绝人类的AI

该封杀吗?

baf0aae565bfdda5383c6d0b56325c8c.png

第一条已经不算是新闻了,但在当时还挺炸裂的。

5月末,超过350名AI领域的行业高管、专家和教授签署了一封公开信,警告AI可能给人类带来灭绝风险。其实著名者包括括“ChatGPT之父”Open AI首席执行官山姆·奥特曼、DeepMind创始人、首席执行官戴密斯·哈萨比斯等大佬。

于是就有朋友说了,这些做AI的都说AI要毁灭人类了,咱们还弄他干啥,赶快封杀啊,晚一点《终结者》和《黑客帝国》就要上演了。

b40eee51a0abb9dfa877ccec89d6a482.png

但这事换一个角度看,这么多位业界高管提醒要警惕AI失控,但其中有哪位从我做起,放弃AI事业了吗?显然并没有。

这种警告在整个AI发展,乃至科技发展历史上其实屡见不鲜。一方面业内人士对可能存在的失控提请社会关注,是一种分内之事。另一方面这也是欧美当前社会氛围下,符合某某正确的必然表态。

我们惧怕AI,很大一部分原因都来自科幻文学与电影,但事实上任何产业失序发展都可能带来毁灭性的影响。化工,能源,工业,甚至娱乐业都是如此。规范发展当然重要,但规范不意味着封禁,更不意味恐慌。

火是如此的危险,但学会用火是我们人类告别猿猴形态的标志。

所以,别怕AI。

e0559e699f0f6f308cc7595b44ea3fee.png

免费的大模型来了

就问你们怕不怕?

最近几天还有一个热议话题,就是Llama 2开源。这件事在AI行业内激起的讨论,似乎比行业外还要大。

其中争议的逻辑很好理解,就是免费、开源的大模型都出现了,你们花那么多钱做的闭源大模型岂不是要打水漂了?可以观察到,一些趁着大模型风口,刚刚进入AI行业或者投资AI项目的朋友对此非常焦虑。

301b597e8d8da485fa916803510d185b.png

这其实也是个很难成立的说法。从软件发展史上看,开源仅仅是一种竞争策略,有的领域合适,有的不合适。不是所有软件最后都会走向开源,并且开源大模型有大量存在的问题,比如无法适配大量企业用户的安全、隐私、自主可控需求。同时,开源会导致算法供应商的利润空间下降,服务能力打折,从而无法满足用户需求。仅仅从深度学习算法兴起的这十年来看,主流算法模型也大多是闭源的,

加上开源模型能力普遍不强,因此开源大模型在很长一段时间,都很难给产业秩序带来冲击。具体内容,我们在《大模型,开源干不掉闭源》这篇文章中有详细阐释。

其实对于刚刚加入这个领域的朋友来说,需要焦虑的不是开源冲击,而是大模型就像很多基础软件一样,最后必然是去多留少。如何在这个过程里确保自身价值不受损害,才是值得关注的问题。

马斯克出手了

欧美互联网大洗牌?

608391a317e496180f039c6d9fc1d62f.png

这两天另一个热议的话题,是马斯克宣布了自己的超级X计划。随着推特改名的步伐加快,各界普遍认为马斯克要将“新推特”变成“微博+微信”模式的超级终端。

出于对马斯克搞事能力的信服,很多朋友认为接下来欧美互联网即将大洗牌,甚至有可能给中国互联网带来某种程度的影响。

28ade3c26217307b269b792dc71e3fa1.png

对此我个人是比较谨慎的。如果我们排除马斯克的个人光环,仅仅来看他参与的项目,会发现除了特斯拉之外,大多数项目都进展不快,商业成果不佳。当然,这也与这些项目普遍过于超前有关系。而推特的迭代,不仅需要面对来自Meta的近身肉搏,(这里插一句,也不知道两位CEO的近身肉搏什么时候上演)。更需要面对谷歌、苹果的压力。

在欧美互联网的超级系统层面,最具有垄断力的其实不是某个终端,而是多终端卡死底层位置的谷歌。其无所不在的程度连苹果都难以望其项背。

有理由相信,在马斯克本人巨大的流量和号召力,新推特会得到剧烈的短期增长。但长期竞争却很可能是“超级X”不太擅长的。

当然,新推特必然会纳入更多xAI带来的智能化能力,这个点是非常具有想象力,也是很可能成为中国科技界下一轮抄作业目标的。

0d9b15f4fd9cc0763992a9bdbef4a4f8.png

GPT-4变笨了,AI还行吗?

最近AI还有一个不算利好的消息,就说GPT-4变笨了。

7月20日, 斯坦福大学和加州大学伯克利分校的研究团队提出,对比3月和6月的GPT-4版本,发现其在数学问题、代码生成、视觉推理任务上都有下降。

很快,openAI就在博客上回复了这个观点,表示虽然大多数指标都有所改善,但GPT-4在某些任务上可能表现会更差。

789d34b9ea9789371d3f5d35d093b9eb.png

于是又有很多声音出现,一部分觉得扛旗的GPT-4都不行了,AI是不是没劲了?另一部分声音倾向阴谋论,认为这是openAI故意的。

我们当然不知道这个现象背后的真实问题在哪,但可以讨论一个相对积极的方向。就是GPT本身是基于反馈再优化的模型机制,因此当回馈量下降,尤其是高质量回馈缺乏之后,其本身是可能能力变差的。

而走向这个方向的原因,或许是因为openAI越来越复杂、严苛的使用策略,以及越来越多的优质大模型正式开放,分流了聚焦在GPT上的流量。

有教师朋友跟我说,第一名分数领先太大,其实对整个班级的学习并不好。一个AI变笨了,说不定意味着全班AI普遍变聪明了?

妙鸭相机火了

该All in证件照吗?

2fbf2fdfe3c87e8b1fc211201c1ef536.png

回到国内,值得欣喜的事情是终于有AI应用火起来了。妙鸭相机在短时间内聚集了极大关注,当然也引发了一系列讨论。

这些讨论中,我们感觉最没必要的一种,是认为AI的价值体现在证件照上非常明显,所以咱们现在感觉投入,去革海马体的命吧。

694be563df78fb03fe10abf3ae120a84.png

这属于标准的只见树木,不见森林,稍微动脑想象就会发现,大模型能够带来的应用变革数不胜数,生成写真证件照仅仅是其中微小的一个。

预期看到了证件照,就赶紧all in,不如去想象大模型的底层逻辑、应用成本、商业模式,然后去发现发现还有哪些类似的需求可以填补。

大模型原生应用,是这一轮AI风口能带来的最大想象力,可别轻信忽悠,把大好机会黏在了一张证件照上。

总之,各种信息背后,充斥着诸多来自未来的不确定性,我们需要长久地审视,千万别把一时当金科,把热闹当玉律。

见其所见,知其略知,达所未达,是我们混迹智能时代的最佳状态。

8b03ddb6126029de99924fda0cdbebdd.gif

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/74156.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于改进粒子群算法的混合储能系统容量优化(Matlab代码实现)

目录 💥1 概述 📚2 运行结果 🎉3 文献来源 🌈4 Matlab代码及文章讲解 ​ 💥1 概述 摘要: 为了调高风光互补发电储能系统的经济性,减少其运行费用,研究风光互补发电储能系统的容量优化配置模型&…

Nginx配置WebSocket反向代理

1、WebSocket协议 ​ WebSocket协议相比较于HTTP协议成功握手后可以多次进行通讯,直到连接被关闭。但是WebSocket中的握手和HTTP中的握手兼容,它使用HTTP中的Upgrade协议头将连接从HTTP升级到WebSocket。这使得WebSocket程序可以更容易的使用现已存在的…

云曦暑期学习第三周——ctfshow--php特性(89-104)

目录 web89 preg_match函数 、数组 web90 intval()函数、强比较 web91 正则修饰符 web92 intval()函数、弱比较 web93 八进制、小数点 web94 strpos() 函数、小数点 web95 小数点 web96 highlight_file() 下的目录路径 web97 数组 web98 三目运算符 web9…

iOS开发-NotificationServiceExtension实现实时音视频呼叫通知响铃与震动

iOS开发-NotificationServiceExtension实现实时音视频呼叫通知响铃与震动 在之前的开发中,遇到了实时音视频呼叫通知,当App未打开或者App在后台时候,需要通知到用户,用户点击通知栏后是否接入实时音视频的视频或者音频通话。 在…

深度学习技巧应用24-深度学习手撕代码与训练流程的联系记忆方法

大家好,我是微学AI,今天给大家介绍一下深度学习技巧应用24-深度学习手撕代码与训练流程的联系记忆方法,大家都知道深度学习模型训练过程是个复杂的过程,这个过程包括数据的收集,数据的处理,模型的搭建,优化器的选择,损失函数的选择,模型训练,模型评估等步骤,其中缺少…

1. CUDA中的grid和block

1. CUDA中的grid和block基本的理解 Kernel: Kernel不是CPU,而是在GPU上运行的特殊函数。你可以把Kernel想象成GPU上并行执行的任务。当你从主机(CPU)调用Kernel时,它在GPU上启动,并在许多线程上并行运行。 Grid: 当你…

Android 之 MediaPlayer 播放音频与视频

本节引言: 本节带来的是Android多媒体中的——MediaPlayer,我们可以通过这个API来播放音频和视频 该类是Androd多媒体框架中的一个重要组件,通过该类,我们可以以最小的步骤来获取,解码 和播放音视频。它支持三种不同的…

Android 14重要更新预览

Android 14重要更新预览 国际化 Android 14 在 Android 13 的基础上进一步扩展了按应用设定语言功能,提供了一些额外的功能: 自动生成应用的 localeConfig:从 Android Studio Giraffe Canary 7 和 AGP 8.1.0-alpha07 开始,您可以…

分布式限流方案及实现

优质博文:IT-BLOG-CN 一、限流的作用和意义 限流是对高并发访问进行限制,限速的过程。通过限流来限制资源,可以提高系统的稳定性和可靠性,控制系统的负载,削峰填谷,保证服务质量。 服务限流后的常见处理…

【论文笔记】KDD2019 | KGAT: Knowledge Graph Attention Network for Recommendation

Abstract 为了更好的推荐,不仅要对user-item交互进行建模,还要将关系信息考虑进来 传统方法因子分解机将每个交互都当作一个独立的实例,但是忽略了item之间的关系(eg:一部电影的导演也是另一部电影的演员&#xff09…

【React】关于组件之间的通讯

🌟组件化:把一个项目拆成一个一个的组件,为了便与开发与维护 组件之间互相独立且封闭,一般而言,每个组件只能使用自己的数据(组件状态私有)。 如果组件之间相互传参怎么办? 那么就要…

[nlp] TF-IDF算法介绍

(1)TF是词频(Term Frequency) 词频是文档中词出现的概率。 (2) IDF是逆向文件频率(Inverse Document Frequency) 包含词条的文档越少,IDF越大。

Maven依赖管理

依赖特性: 1、依赖配置 2、依赖传递 3、可选依赖 4、排除依赖 5、依赖范围

linux(centos) docker 安装 nginx

​1、拉取nginx最新版本镜像 docker pull nginx:latest 查看镜像 docker images 或者 docker images -a 2.启动nginx容器 docker run -d -p 80:80 --name nginx nginx 使用docker run命令,启动nginx容器。 --name,设置容器名。为方便记忆&#xff…

监控数据的采集方式及原理

1、读取 /proc 目录 /proc 是一个位于内存中的伪文件系统,该目录下保存的不是真正的文件和目录,而是一些“运行时”信息,Linux 操作系统层面的很多监控数据,比如内存数据、网卡流量、机器负载等,都是从 /proc 中获取的…

设计模式-中介者模式在Java中使用示例-客户信息管理

场景 欲开发客户信息管理窗口界面,界面组件之间存在较为复杂的交互关系:如果删除一个客户, 要在客户列表(List)中删掉对应的项,客户选择组合框(ComboBox)中客户名称也将减少一个; 如果增加一个客户信息,…

接口自动化代码不会写?试试RunnerGo

RunnerGo支持自动化测试功能,RunnerGo的工作流程是:接口管理-场景管理-性能测试-自动化测试,所以自动化测试的运行内容为场景下的用例,我们可以在“场景管理”中预先配置好该场景下的用例,也可以在自动化测试中创建用例…

Tensorflow benchmark 实操指南

环境搭建篇见环境搭建-CentOS7下Nvidia Docker容器基于TensorFlow1.15测试GPU_东方狱兔的博客-CSDN博客 1. 下载Benchmarks源码 从 TensorFlow 的 Github 仓库上下载 TensorFlow Benchmarks,可以通过以下命令来下载 https://github.com/tensorflow/benchmarks 我…

如何使用大模型处理生活繁琐的工作

如果每封电子邮件、每个带有订单、发票、投诉、录用请求或工作申请的 PDF 都可以翻译成机器可读的数据,会怎样?然后可以由 ERP / CRM / LMS / TMS 自动处理吗?无需编程特殊接口。 听起来很神奇?它确实有一些魔力。但最近已成为可…

【计算机视觉中的 GAN 】 - 生成学习简介(1)

一、说明 在阅读本文之前,强烈建议先阅读预备知识,否则缺乏必要的推理基础。本文是相同理论GAN原理的具体化范例,阅读后有两个好处:1 巩固了已经建立的GAN基本概念 2 对具体应用的过程和套路进行常识学习,这种练习题一…