Tensorflow benchmark 实操指南

环境搭建篇见环境搭建-CentOS7下Nvidia Docker容器基于TensorFlow1.15测试GPU_东方狱兔的博客-CSDN博客

1. 下载Benchmarks源码

从 TensorFlow 的 Github 仓库上下载 TensorFlow Benchmarks,可以通过以下命令来下载

https://github.com/tensorflow/benchmarks

我的 - settings -SSH and GPG Keys 添加公钥id_rsa.pub

拉取代码 git clone git@github.com:tensorflow/benchmarks.git

git同步远程分支到本地,拉取tensorflow对应版本的分支

git fetch origin 远程分支名xxx:本地分支名xxx
使用这种方式会在本地仓库新建分支xxx,但是并不会自动切换到新建的分支xxx,需要手动checkout,当然了远程分支xxx的代码也拉取到了本地分支xxx中。采用这种方法建立的本地分支不会和远程分支建立映射关系

root@818d19092cdc:/gpu/benchmarks# git checkout -b tf1.15 origin/cnn_tf_v1.15_compatible

2. 运行不同模型

root@818d19092cdc:/gpu/benchmarks/scripts/tf_cnn_benchmarks# pwd
/gpu/benchmarks/scripts/tf_cnn_benchmarks
root@818d19092cdc:/gpu/benchmarks/scripts/tf_cnn_benchmarks# python3 tf_cnn_benchmarks.py

真实操作:

[root@gputest ~]# docker ps

进入CONTAINER ID  containerid

[root@gputest ~]# nvidia-docker exec -it 818d19092cdc /bin/bash

新开窗口 

[root@gputest ~]# nvidia-smi -l 3 

该命令将3秒钟输出一次GPU的状态和性能,可以通过查看输出结果来得出GPU的性能指标

一、resnet50模型

python3 tf_cnn_benchmarks.py --num_gpus=1 --batch_size=2 --model=resnet50 --variable_update=parameter_server

Running warm up
2023-07-21 09:50:55.398126: I tensorflow/stream_executor/platform/default/dso_loader.cc:50] Successfully opened dynamic library libcublas.so.12
2023-07-21 09:50:55.533068: I tensorflow/stream_executor/platform/default/dso_loader.cc:50] Successfully opened dynamic library libcudnn.so.8
Done warm up
Step    Img/sec    total_loss
1    images/sec: 10.1 +/- 0.0 (jitter = 0.0)    7.695
10    images/sec: 10.7 +/- 0.1 (jitter = 0.1)    8.022
20    images/sec: 10.7 +/- 0.1 (jitter = 0.2)    7.269
30    images/sec: 10.7 +/- 0.1 (jitter = 0.2)    7.889
40    images/sec: 10.7 +/- 0.1 (jitter = 0.2)    8.842
50    images/sec: 10.6 +/- 0.1 (jitter = 0.2)    6.973
60    images/sec: 10.6 +/- 0.1 (jitter = 0.2)    8.124
70    images/sec: 10.6 +/- 0.0 (jitter = 0.2)    7.644
80    images/sec: 10.6 +/- 0.0 (jitter = 0.2)    7.866
90    images/sec: 10.6 +/- 0.0 (jitter = 0.3)    7.687
100    images/sec: 10.6 +/- 0.0 (jitter = 0.3)    8.779
----------------------------------------------------------------
total images/sec: 10.63

二、vgg16模型

python3 tf_cnn_benchmarks.py --num_gpus=1 --batch_size=2 --model=vgg16 --variable_update=parameter_server

由于阿里云服务器申请的是2个G显存,所以只能跑size=1 2 和 4 ,超出会吐核

已放弃(吐核)--linux 已放弃(吐核) (core dumped) 问题分析

出现这种问题一般是下面这几种情况:

1.内存越界

2.使用了非线程安全的函数

3.全局数据未加锁保护

4.非法指针

5.堆栈溢出

也就是需要检查访问的内存、资源。

可以使用 strace 命令来进行分析

在程序的运行命令前加上 strace,在程序出现:已放弃(吐核),终止运行后,就可以通过 strace 打印在控制台的跟踪信息进行分析和定位问题

方法2:docker启动普通镜像的Tensorflow

$ docker pull tensorflow/tensorflow:1.8.0-gpu-py3
$ docker tag tensorflow/tensorflow:1.8.0-gpu-py3 tensorflow:1.8.0-gpu

# nvidia-docker run -it -p 8888:8888 tensorflow:1.8.0-gpu
$ nvidia-docker run -it -p 8033:8033 tensorflow:1.8.0-gpu

浏览器进入指定 URL(见启动终端回显) 就可以利用 IPython Notebook 使用 tensorflow

评测指标

  • 训练时间:在指定数据集上训练模型达到指定精度目标所需的时间

  • 吞吐:单位时间内训练的样本数

  • 加速效率:加速比/设备数*100%。其中,加速比定义为多设备吞吐数较单设备的倍数

  • 成本:在指定数据集上训练模型达到指定精度目标所需的价格

  • 功耗:在指定数据集上训练模型达到指定精度目标所需的功耗

在初版评测指标设计中,我们重点关注训练时间、吞吐和加速效率三项

3. 保存镜像的修改

执行以下命令,保存TensorFlow镜像的修改

docker commit   -m "commit docker" CONTAINER_ID  nvcr.io/nvidia/tensorflow:18.03-py3
# CONTAINER_ID可通过docker ps命令查看。

[root@gputest ~]# docker commit -m "commit docker" 818d19092cdc nvcr.io/nvidia/tensorflow:23.03-tf1-py3
sha256:fc14c7fdf361308817161d5d0cc018832575e7f2def99fe49876d2a41391c52c

 查看docker进程

[root@gputest ~]# docker ps

进入CONTAINER ID  containerid

[root@gputest ~]# nvidia-docker exec -it 818d19092cdc /bin/bash

4. TensorFlow支持的所有参数

参数名称

描述

备注

--help

查看帮助信息

--model

使用的模型名称,如alexnet、resnet50等,必须指定

请查阅所有支持的模型

--batch_size

batch size大小

默认值为32

--num_epochs

epoch的数量

默认值为1

--num_gpus

使用的GPU数量。设置为0时,仅使用CPU

  • 在单机多卡模式下,指定每台机器使用的GPU数量;

  • 在multi-worker模式下,指定每个worker使用的GPU数量

--data_dir

输入数据的目录,对于CV任务,当前仅支持ImageNet数据集;如果没有指定,表明使用合成数据

--do_train

执行训练过程

这三个选项必须指定其中的至少一个,可以同时指定多个选项。

--do_eval

执行evaluation过程

--do_predict

执行预测过程

--data_format

使用的数据格式,NCHW或NHWC,默认为NCHW。

  • 对于CPU设备,建议使用NHWC格式

  • 对于GPU设备,建议使用NCHW格式

--optimizer

所使用的优化器,当前支持SGD、Adam和Momentum,默认为SGD

--init_learning_rate

使用的初始learning rate的值

--num_epochs_per_decay

learning rate decay的epoch间隔

如果设置,这两项必须同时指定

--learning_rate_decay_factor

每次learning rate执行decay的因子

--minimum_learning_rate

最小的learning rate值

如果设置,需要同时指定面的两项

--momentum

momentum参数的值

用于设置momentum optimizer

--adam_beta1

adam_beta1参数的值

用于设置Adam

--adam_beta2

adam_beta2参数的值

--adam_epsilon

adam_epsilon参数的值

--use_fp16

是否设置tensor的数据类型为float16

--fp16_vars

是否将变量的数据类型设置为float16。如果没有设置,变量存储为float32类型,并在使用时转换为fp16格式。

建议:不要设置

必须同时设置--use_fp16

--all_reduce_spec

使用的AllReduce方式

--save_checkpoints_steps

间隔多少step存储一次checkpoint

--max_chkpts_to_keep

保存的checkpoint的最大数量

--ip_list

集群中所有机器的IP地址,以逗号分隔

用于多机分布式训练

--job_name

任务名称,如‘ps'、’worker‘

--job_index

任务的索引,如0,1等

--model_dir

checkpoint的存储目录

--init_checkpoint

初始模型checkpoint的路径,用于在训练前加载该checkpoint,进行finetune等

--vocab_file

vocabulary文件

用于NLP

--max_seq_length

输入训练的最大长度

用于NLP

--param_set

创建和训练模型时使用的参数集。

用于Transformer

--blue_source

包含text translate的源文件,用于计算BLEU分数

--blue_ref

包含text translate的源文件,用于计算BLEU分数

--task_name

任务的名称,如MRPC,CoLA等

用于Bert

--do_lower_case

是否为输入文本使用小写

--train_file

训练使用的SQuAD文件,如train-v1.1.json

用于Bert模型,运行SQuAD, --run_squad必须指定

--predict_file

预测所使用的SQuAD文件,如dev-v1.1.json或test-v1.1.json

--doc_stride

当将长文档切分为块时,块之间取的间距大小

--max_query_length

问题包含的最大token数。当问题长度超过该值时,问题将被截断到这一长度。

--n_best_size

nbest_predictions.json输出文件中生成的n-best预测的总数

--max_answer_length

生成的回答的最大长度

--version_2_with_negative

如果为True,表明SQuAD样本中含有没有答案(answer)的问题

--run_squad

如果为True,运行SQUAD任务,否则,运行sequence (sequence-pair)分类任务

5. GPU机器学习调研tensorflow

 如何在tensorflow中指定使用GPU资源

在配置好GPU环境的TensorFlow中 ,如果操作没有明确地指定运行设备,那么TensorFlow会优先选择GPU。在默认情况下,TensorFlow只会将运算优先放到/gpu:0上。如果需要将某些运算放到不同的GPU或者CPU上,就需要通过tf.device来手工指定

import tensorflow as tf# 通过tf.device将运算指定到特定的设备上。
with tf.device('/cpu:0'):a = tf.constant([1.0, 2.0, 3.0], shape=[3], name='a')b = tf.constant([1.0, 2.0, 3.0], shape=[3], name='b')
with tf.device('/gpu:1'):c = a + bsess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
print sess.run(c)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/74136.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何使用大模型处理生活繁琐的工作

如果每封电子邮件、每个带有订单、发票、投诉、录用请求或工作申请的 PDF 都可以翻译成机器可读的数据,会怎样?然后可以由 ERP / CRM / LMS / TMS 自动处理吗?无需编程特殊接口。 听起来很神奇?它确实有一些魔力。但最近已成为可…

【计算机视觉中的 GAN 】 - 生成学习简介(1)

一、说明 在阅读本文之前,强烈建议先阅读预备知识,否则缺乏必要的推理基础。本文是相同理论GAN原理的具体化范例,阅读后有两个好处:1 巩固了已经建立的GAN基本概念 2 对具体应用的过程和套路进行常识学习,这种练习题一…

3D Web轻量化渲染开发工具HOOPS Communicator是什么?

HOOPS Communicator是Tech Soft 3D旗下的主流产品之一,具有强大的、专用的高性能图形内核,是一款专注于基于Web端的高级3D工程应用程序。由HOOPS Server和HOOPS Web Viewer两大部分组成,提供了HOOPS Convertrer、Data Authoring的模型转换和编…

对模版以及模版中参数的理解

所谓模板,实际上是建立一个通用函数或类,其类内部的类型和函数的形参类型不具体指定,用一个虚拟的类型来代表。 就比方说你想要实现 一个Add的加法函数,面对不同的类型,你是否要进行多次函数重载呢,其实这多…

HCIP——前期综合实验

前期综合实验 一、实验拓扑二、实验要求三、实验思路四、实验步骤1、配置接口IP地址2、交换机配置划分vlan10以及vlan203、总部分部,骨干网配置OSPF分部总部骨干网 4、配置BGP建立邻居关系总部骨干网分部 5、发布用户网段6、将下一跳改为本地7、允许AS重复8、重发布…

计算机图形学笔记2-Viewing 观测

观测主要解决的问题是如何把物体的三维“模型”变成我们在屏幕所看到的二维“图片”,我们在计算机看到实体模型可以分成这样几步: 相机变换(camera transformation)或眼变换(eye transformation):想象把相机放在任意一个位置来观测物体&#…

Electron + Vue3 + Vite + TS 构建桌面应用

之前是使用React、Electron、TS和webpack来构建桌面应用的。虽然功能齐全,但是打包等等开发的体验不太理想,总感觉太慢了。作为一个开发者,我们总是希望,执行构建命令后,可以快速打包或者启动本地应用,且通过更少的配置,来完成开发体验。 现在的vite已经得到广泛的应用…

Linux操作系统学习,Linux基础命令大全

目录 第一章、Linux简介和安装1.1)Linux简介和分类1.2)安装VMware虚拟机,在虚拟机中安装CentOS 7 第二章、虚拟机中Linux的IP地址配置详解2.1)什么是IP地址,如何查看2.2)虚拟机NAT模式中Linux的IP地址设置有…

【雕爷学编程】Arduino动手做(181)---Maixduino AI开发板2

37款传感器与执行器的提法,在网络上广泛流传,其实Arduino能够兼容的传感器模块肯定是不止这37种的。鉴于本人手头积累了一些传感器和执行器模块,依照实践出真知(一定要动手做)的理念,以学习和交流为目的&am…

mysql-入门笔记-3

# ----------排序查询-------- # 语法 # select 字段列表 from 表名 order by 字段1 排序方式1 ,字段2 排序方式2 ; DESC 降序 ASC升序 # 1 根据年龄对公司的员工进行升序排序---默认升序-黄色提示代码冗余 select * from userTable order by age ASC ; # 2 根据入职时间,对员…

【二叉树进阶】二叉树的前中后序遍历(非递归迭代实现)

文章目录 1. 二叉树的前序遍历1.1 思路分析1.2 AC代码 2. 二叉树的中序遍历2.1 思路分析2.2 AC代码 3. 二叉树的后序遍历3.1 思路13.2 思路1AC3.3 思路23.4 思路2AC 1. 二叉树的前序遍历 题目链接: link 不用递归,用迭代算法如何实现对二叉树的前序遍历&#xff1f…

牛客网Verilog刷题——VL48

牛客网Verilog刷题——VL48 题目答案 题目 在data_en为高期间,data_in将保持不变,data_en为高至少保持3个B时钟周期。表明,当data_en为高时,可将数据进行同步。本题中data_in端数据变化频率很低,相邻两个数据间的变化&…

大模型开发(十五):从0到1构建一个高度自动化的AI项目开发流程(上)

全文共5600余字,预计阅读时间约13~20分钟 | 满满干货(附全部代码),建议收藏! 本文目标:提出一种利用大语言模型(LLMs)加快项目的开发效率的解决思路,本文作为第一部分,主要集中在如何完整的执行引导Chat模…

网盘共享文件的优势及对团队办公的帮助

伴随着科技的发展,互联网逐步渗透了企业办公方式。各种类型的网盘应运而生,成为当下文件共享的主要方式之一。那么网盘共享文件有什么优势?对团队办公有何帮助呢? 网盘共享文件的优势 1、方便快捷:用户通过移动设备即…

git面试题

文章目录 git经常用哪些指令git出现代码冲突怎么解决你们团队是怎么管理git分支的如何实现Git的免密操作 git经常用哪些指令 产生代码库 新建一个git代码库 git init下载远程项目和它的整个代码历史 git clone 远程仓库地址配置 显示配置 git config --list [--global]编辑配置…

Kubernetes 使用 helm 部署 NFS Provisioner

文章目录 1. 介绍2. 预备条件3. 部署 nfs4. 部署 NFS subdir external provisioner4.1 集群配置 containerd 代理4.2 配置代理堡垒机通过 kubeconfig 部署 部署 MinIO添加仓库修改可配置项 访问nodepotingress 1. 介绍 NFS subdir external provisioner 使用现有且已配置的NFS…

设计模式再探——代理模式

目录 一、背景介绍二、思路&方案三、过程1.代理模式简介2.代理模式的类图3.代理模式代码4.代理模式还可以优化的地方5.代理模式的项目实战,优化后(只加了泛型方式,使用CGLIB的代理) 四、总结五、升华 一、背景介绍 最近在做产品过程中对于日志的统一…

2023年自然语言处理与信息检索国际会议(ECNLPIR 2023) | EI Compendex, Scopus双检索

会议简介 Brief Introduction 2023年自然语言处理与信息检索国际会议(ECNLPIR 2023) 会议时间:2023年9月22日-24日 召开地点:中国杭州 大会官网:ECNLPIR 2023-2023 Eurasian Conference on Natural Language Processing and Information Retr…

【机器学习】Cost Function for Logistic Regression

Cost Function for Logistic Regression 1. 平方差能否用于逻辑回归?2. 逻辑损失函数loss3. 损失函数cost附录 导入所需的库 import numpy as np %matplotlib widget import matplotlib.pyplot as plt from plt_logistic_loss import plt_logistic_cost, plt_two_…

自己实现MyBatis 底层机制--抽丝剥茧(上)

😀前言 本篇博文是学习过程中的笔记和对于MyBatis底层机制的分析思路,希望能够给您带来帮助😊 🏠个人主页:晨犀主页 🧑个人简介:大家好,我是晨犀,希望我的文章可以帮助到…