单片机-STM32 WIFI模块--ESP8266 (十二)

1.WIFI模块--ESP8266

名字由来:

Wi-Fi这个术语被人们普遍误以为是指无线保真(Wireless Fidelity),并且即便是Wi-Fi联盟本身也经常在新闻稿和文件中使用“Wireless Fidelity”这个词,Wi-Fi还出现在ITAA的一个论文中。但事实上,Wi-Fi一词没有任何意义,也是没有全写的。

原理部分

无线网络在无线局域网的范畴是指“无线相容性认证”,实质上是一种商业认证,同时也是一种无线联网技术,以前通过网线连接电脑,而Wi-Fi则是通过无线电波来连网;常见的就是一个无线路由器,那么在这个无线路由器的电波覆盖的有效范围都可以采用Wi-Fi连接方式进行联网,如果无线路由器连接了一条ADSL线路或者别的上网线路,则又被称为热点。

ESP8266外观图:

ESP8266如何通信:

需要使用单片机的串口控制ESP8266

因为ESP8266目前预留的就是。

单片机---》ESP8266

ESP8266的特性:

不同的WIFI模块对比:

了解以下公司:

乐鑫信息科技

安信可

有人科技

移远科技

TCP和UDP的区别

TCP是一种面向连接,可靠的稳定的网络通信方式,连接的时候必须有应答,可以确定数据传输的顺序

UDP连接是一种面向无连接的通信,发送方发送数据,不需要给回复,发送方只负责发送数据,但是数据是否发送完成,不去负责。

2.AT指令集

AT指令集是从终端设备(Terminal Equipment,TE)或数据终端设备(Data Terminal Equipment,DTE)向终端适配器(Terminal Adapter, TA)或数据电路终端设备(Data Circuit Terminal Equipment,DCE)发送的。

AT指令集是现在已经设置好的一套指令,用于驱动外部设备,如果需要使用AT指令集控制外部设备的话,需要首先熟悉AT操作。

单片机和ESP8266连接图:

为什么使用AT指令集??

1.ESP8266内部已经集成了TCP/IP协议,而且也烧写了相关固件

2.我们的MCU部分只需要像控制OLED屏一样发送指令即可

3.ESP8266控制指令全部用的都是AT指令集

ESP8266相关的AT指令集

AT指令集的四种类型:

比如,我们要查询串口配置:

        AT_UART?

设置串口:

AT+UART=<baudrate>,<databits>,<stopbits>,<pa rity>,<flow control>

AT--测试指令

ATE--回显设置

AT+RST--复位

AT+GMR--查询版本信息

AT+CWMODE—设置 Wi-Fi 模式

Station--客户端

SoftAP--服务器

SoftAP+Station--混合模式

AT+CWJAP—连接 AP

AT+CPIMUX--设置连接

AT+CIPMODE—设置传输模式

AT+CIPSTART—建⽴立 TCP 连接, UDP 传输或 SSL 连接

ESP8266透传

AT
ATE0  关闭回显
AT+CWMODE= 1  //客户端
AT+CWJAP="WLL001","123456789"    //
AT+CIPMUX=0  //0--单链接AT+CIPSTART1
="TCP","120.76.100.197",10002  //设置服务器IP端口
AT+CIPMODE=1  //透传模式AT+CIPSEND     
>            //收发数据
注意每一个指令的结尾都需要换行符

[15:24:06.186]发→◇ATOK[15:24:27.367]发→◇AT+CWMODE=1
□
[15:24:27.372]收←◆AT+CWMODE=1OK[15:27:47.266]发→◇AT
□
[15:27:47.271]收←◆ATOK[15:27:51.816]发→◇AT+CWMODE=1
□
[15:27:51.820]收←◆AT+CWMODE=1OK[15:27:55.146]发→◇AT+CWJAP="WLL001","123456789"
□
[15:27:55.153]收←◆AT+CWJAP="WLL001","123456789"[15:28:09.220]收←◆+CWJAP:3FAIL[15:28:43.918]发→◇AT+CWJAP="WLL001","123456789"
□
[15:28:43.925]收←◆AT+CWJAP="WLL001","123456789"[15:28:47.907]收←◆WIFI CONNECTED[15:28:48.731]收←◆
OK
WIFI GOT IP[15:28:53.611]发→◇AT+CIPMUX=0
□
[15:28:53.616]收←◆AT+CIPMUX=0OK[15:29:16.708]发→◇AT+CIPSTART="TCP","192.168.137.1",8080
□
[15:29:16.714]收←◆AT+CIPSTART="TCP","192.168.137.1",8080
CONNECTOK[15:29:42.209]发→◇AT+CIPMODE=1
□
[15:29:42.219]收←◆AT+CIPMODE=1OK[15:30:15.994]发→◇AT+CIPSEND
>
□
[15:30:15.999]收←◆AT+CIPSEND
>busy p...OK>
[15:30:27.237]发→◇hello
□
[15:30:31.699]收←◆http://www.cmsoft.cn
[15:30:47.653]发→◇+++
□
[15:31:23.607]发→◇+++□
[15:31:28.834]发→◇+++□
[15:31:28.837]收←◆+++
[15:31:55.340]发→◇AT+CIPMODE=0□
[15:31:55.346]收←◆AT+CIPMODE=0busy p..
ERROR[15:33:24.341]发→◇AT+CIPSTART="TCP","192.168.137.1",8080
□
[15:33:24.349]收←◆AT+CIPSTART="TCP","192.168.137.1",8080
ALREADY CONNECTEDERROR[15:33:24.560]发→◇AT+CIPSTART="TCP","192.168.137.1",8080
□
[15:33:24.566]收←◆AT+CIPSTART="TCP","192.168.137.1",8080
ALREADY CONNECTED

3.单片机串口配置

1.选择一个串口(串口2 或者串口3 串口4.。。。。都可以)

2.串口的接收中断,用于接收数据

3.判断数据是否接收完成的方式:

        a.串口的空闲中断,用于判断数据是否接收完成,(因为接受的数据是不定长)

        b.使用定时器进行判断,比如当开始接收数据的时候,打开定时器,当定时器计数3秒还没有数据再次到来,就可以判断数据接收。

4.接收到数据之后,解析数据

查找接收到的字符串中的关键字,比如“Ok”

5.复位管教和使能管教的的配置

随便找两个管教设置为,通用推完输出即可

使能(EN)---驱动ESP8266

RST--拉高--PG14

EN--拉高--PG13

使用的是串口3

TX--PB10

RX--PB11

串口3的配置部分:

void esp8266_Init(void)
{GPIO_InitTypeDef GPIOInitTypeDef;USART_InitTypeDef USARTInitTypeDef;//打开时钟RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE);RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART3,ENABLE);//配置PB10--TX PB11--RX//PB10--复用推挽输出GPIOInitTypeDef.GPIO_Pin=GPIO_Pin_10;GPIOInitTypeDef.GPIO_Mode=GPIO_Mode_AF_PP;GPIOInitTypeDef.GPIO_Speed=GPIO_Speed_50MHz;GPIO_Init(GPIOB,&GPIOInitTypeDef);//PB11--浮空GPIOInitTypeDef.GPIO_Pin=GPIO_Pin_11;GPIOInitTypeDef.GPIO_Mode=GPIO_Mode_IN_FLOATING;GPIO_Init(GPIOB,&GPIOInitTypeDef);//usart3的配置USARTInitTypeDef.USART_BaudRate=115200;USARTInitTypeDef.USART_HardwareFlowControl=USART_HardwareFlowControl_None;USARTInitTypeDef.USART_Mode=USART_Mode_Rx|USART_Mode_Tx;USARTInitTypeDef.USART_Parity=USART_Parity_No;USARTInitTypeDef.USART_StopBits=USART_StopBits_1;USARTInitTypeDef.USART_WordLength=USART_WordLength_8b;USART_Init(USART3,&USARTInitTypeDef);//配置中断//设置空闲中断和接收中断USART_ITConfig(USART3,USART_IT_RXNE,ENABLE);USART_ITConfig(USART3,USART_IT_IDLE,ENABLE);//NVIC_SetPriority(USART3_IRQn,0);//占先优先级:1 次级优先级:1 NVIC_EnableIRQ(USART3_IRQn);USART_Cmd(USART3,ENABLE);}

ESP8266的使能管脚和复位管脚的配置:

void ESP8266_IO_Config(void)
{GPIO_InitTypeDef gpio_initsources;//打开时钟RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOG,ENABLE);gpio_initsources.GPIO_Pin=GPIO_Pin_13|GPIO_Pin_14;gpio_initsources.GPIO_Mode=GPIO_Mode_Out_PP;gpio_initsources.GPIO_Speed=GPIO_Speed_2MHz;//void GPIO_Init(GPIO_TypeDef* GPIOx, GPIO_InitTypeDef* GPIO_InitStruct);GPIO_Init(GPIOG,&gpio_initsources);
}

串口3中断服务函数:

void USART3_IRQHandler(void)
{u8 data=0;//接收数据--接收中断if(USART_GetITStatus(USART3,USART_IT_RXNE)!=RESET){USART_ClearITPendingBit(USART3,USART_IT_RXNE);//用于接收ESP8266的数据rxbuff[usart_count++]=USART_ReceiveData(USART3);//打印ESP8266的数据到串口助手上USART1->DR=USART_ReceiveData(USART3);
//        printf("0000\r\n");}if(USART_GetITStatus(USART3,USART_IT_IDLE)==SET){
//        rxbuff[rx_count++]=USART_ReceiveData(USART3);//清除数据over_flag=1;//一旦进入空闲中断,置1,本次传输结束rx_count=usart_count;//没有用usart_count=0;data=USART_ReceiveData(USART3);//清空缓存区
//        printf("11111\r\n");USART_ClearITPendingBit(USART3,USART_IT_IDLE);}
}

数据发送部分:

//发送单个字节函数
void USART3_SendData(char data)
{USART_SendData(USART3,data);/* 等待发送数据寄存器为空 */while (USART_GetFlagStatus(USART3, USART_FLAG_TXE) == RESET);    }void Usart3_SendStr(char *str)
{int i=0;while(*(str+i)!='\0'){USART3_SendData(*(str+i));i++;}while(USART_GetFlagStatus(USART3,USART_FLAG_TC)==RESET){}}

ESP8266每次上电的时候需要复位一下:

u8 Esp8266_AT_test(void)
{//"AT\r\n"char count=0;GPIO_SetBits ( GPIOG, GPIO_Pin_13 );GPIO_SetBits ( GPIOG, GPIO_Pin_14 );printf("\r\nAT测试.....\r\n");delay_ms ( 2000 );while ( count < 10 ){printf("\r\nAT测试次数 %d......\r\n", count);if( esp8266_SendCmd ( "AT\r\n", "OK",NULL,500) ){printf("\r\nAT测试启动成功 %d......\r\n", count);return 1;}//复位以下GPIO_ResetBits ( GPIOG, GPIO_Pin_14 );delay_ms ( 500 ); GPIO_SetBits ( GPIOG, GPIO_Pin_14 );++ count;}return 0;
}

发送AT指令的函数:

1、strstr() 函数搜索一个字符串在另一个字符串中的第一次出现。
2、找到所搜索的字符串,则该函数返回第一次匹配的字符串的地址;
3、如果未找到所搜索的字符串,则返回NULL。
uint8_t  esp8266_SendCmd(char *ctl_cmd,char *ret01,char *ret02,uint32_t time)
{uint8_t tim=time;memset(rxbuff,0,sizeof(rxbuff));//发送数据Usart3_SendStr(ctl_cmd);delay_ms(time);//接收数据while(tim--){delay_ms(100);if(over_flag==1)//代表进入了空闲中断,本次接收数据完成{over_flag=0;tim=0;if ( ( ret01 != 0 ) && ( ret02 != 0 ) )        return ( ( bool ) strstr ( rxbuff, ret01 ) || ( bool ) strstr ( rxbuff, ret02 ) ); else if ( ret01 != 0 )return ( ( bool ) strstr ( rxbuff, ret01 ) );elsereturn ( ( bool ) strstr ( rxbuff, ret02 ) );}
//        memset(rxbuff,0,sizeof(rxbuff));}//发送完成之后,等待接收数据,比较返回值的内容return 0;}

主函数中的配置:(联网流程)

esp8266_Init();ESP8266_IO_Config();printf("底层配置初始化完成\r\n");Esp8266_AT_test();delay_ms(3000);printf("配置联网模式\r\n");while(!esp8266_SendCmd("AT+CWMODE=1\r\n","OK",NULL,300))
{}printf("配置热点\r\n");
sprintf(buff,"AT+CWJAP=\"%s\",\"%s\"\r\n",WIFI_ID,WIFI_PW);
while(!esp8266_SendCmd(buff,"OK",NULL,1000))
{}printf("配置服务器端\r\n");memset(buff,0,sizeof(buff));sprintf(buff,"AT+CIPSTART=\"TCP\",\"172.20.10.4\",%d\r\n",WIFI_PORT);
while(!esp8266_SendCmd(buff,"OK",NULL,1000))
{}printf("配置透传\r\n");
while(!esp8266_SendCmd("AT+CIPMODE=1\r\n","OK",NULL,500))
{}printf("收发数据\r\n");while(!esp8266_SendCmd("AT+CIPSEND\r\n",">",NULL,10000))
{}

网络部分:

服务器端的配置:

完整配置:

#include "esp8266.h"
#include "stdio.h"
#include "string.h"
#include "delay.h"
#include "stdlib.h"
#include "stdbool.h"
char rxbuff[256]={0};
uint8_t rx_count=0; 
uint8_t usart_count=0;
uint8_t over_flag=0;void esp8266_Init(void)
{GPIO_InitTypeDef GPIOInitTypeDef;USART_InitTypeDef USARTInitTypeDef;//打开时钟RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE);RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART3,ENABLE);//配置PB10--TX PB11--RX//PB10--复用推挽输出GPIOInitTypeDef.GPIO_Pin=GPIO_Pin_10;GPIOInitTypeDef.GPIO_Mode=GPIO_Mode_AF_PP;GPIOInitTypeDef.GPIO_Speed=GPIO_Speed_50MHz;GPIO_Init(GPIOB,&GPIOInitTypeDef);//PB11--浮空GPIOInitTypeDef.GPIO_Pin=GPIO_Pin_11;GPIOInitTypeDef.GPIO_Mode=GPIO_Mode_IN_FLOATING;GPIO_Init(GPIOB,&GPIOInitTypeDef);//usart3的配置USARTInitTypeDef.USART_BaudRate=115200;USARTInitTypeDef.USART_HardwareFlowControl=USART_HardwareFlowControl_None;USARTInitTypeDef.USART_Mode=USART_Mode_Rx|USART_Mode_Tx;USARTInitTypeDef.USART_Parity=USART_Parity_No;USARTInitTypeDef.USART_StopBits=USART_StopBits_1;USARTInitTypeDef.USART_WordLength=USART_WordLength_8b;USART_Init(USART3,&USARTInitTypeDef);//配置中断//设置空闲中断和接收中断USART_ITConfig(USART3,USART_IT_RXNE,ENABLE);USART_ITConfig(USART3,USART_IT_IDLE,ENABLE);//NVIC_SetPriority(USART3_IRQn,0);//占先优先级:1 次级优先级:1 NVIC_EnableIRQ(USART3_IRQn);USART_Cmd(USART3,ENABLE);}
void ESP8266_IO_Config(void)
{
GPIO_InitTypeDef gpio_initsources;//打开时钟
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOG,ENABLE);
gpio_initsources.GPIO_Pin=GPIO_Pin_13|GPIO_Pin_14;
gpio_initsources.GPIO_Mode=GPIO_Mode_Out_PP;
gpio_initsources.GPIO_Speed=GPIO_Speed_2MHz;//void GPIO_Init(GPIO_TypeDef* GPIOx, GPIO_InitTypeDef* GPIO_InitStruct);GPIO_Init(GPIOG,&gpio_initsources);
}void USART3_IRQHandler(void)
{u8 data=0;//接收数据--接收中断if(USART_GetITStatus(USART3,USART_IT_RXNE)!=RESET){USART_ClearITPendingBit(USART3,USART_IT_RXNE);//用于接收ESP8266的数据rxbuff[usart_count++]=USART_ReceiveData(USART3);//打印ESP8266的数据到串口助手上USART1->DR=USART_ReceiveData(USART3);
//        printf("0000\r\n");}if(USART_GetITStatus(USART3,USART_IT_IDLE)==SET){
//        rxbuff[rx_count++]=USART_ReceiveData(USART3);//清除数据over_flag=1;//一旦进入空闲中断,置1,本次传输结束rx_count=usart_count;//没有用usart_count=0;data=USART_ReceiveData(USART3);//清空缓存区
//        printf("11111\r\n");USART_ClearITPendingBit(USART3,USART_IT_IDLE);}
}void esp8266_Analysis(void)
{int i=0;if(over_flag==1){printf("000000\r\n");over_flag=0;//开始处理数据
//        for(i=0;i<rx_count;i++)printf("rx_data:%s\r\n",rxbuff);}memset(rxbuff,0,sizeof(rxbuff));
}//发送单个字节函数
void USART3_SendData(char data)
{USART_SendData(USART3,data);/* 等待发送数据寄存器为空 */while (USART_GetFlagStatus(USART3, USART_FLAG_TXE) == RESET);    }void Usart3_SendStr(char *str)
{int i=0;while(*(str+i)!='\0'){USART3_SendData(*(str+i));i++;}while(USART_GetFlagStatus(USART3,USART_FLAG_TC)==RESET){}}//发送--AT+.....
uint8_t sendcou=0;
//AT
//回复:OK
//time--每次发送数据等待接受的时间uint8_t  esp8266_SendCmd(char *ctl_cmd,char *ret01,char *ret02,uint32_t time)
{uint8_t tim=time;memset(rxbuff,0,sizeof(rxbuff));//发送数据Usart3_SendStr(ctl_cmd);delay_ms(time);//接收数据while(tim--){delay_ms(100);if(over_flag==1)//代表进入了空闲中断,本次接收数据完成{over_flag=0;tim=0;if ( ( ret01 != 0 ) && ( ret02 != 0 ) )        return ( ( bool ) strstr ( rxbuff, ret01 ) || ( bool ) strstr ( rxbuff, ret02 ) ); else if ( ret01 != 0 )return ( ( bool ) strstr ( rxbuff, ret01 ) );elsereturn ( ( bool ) strstr ( rxbuff, ret02 ) );}
//        memset(rxbuff,0,sizeof(rxbuff));}//发送完成之后,等待接收数据,比较返回值的内容return 0;}
u8 Esp8266_AT_test(void)
{//"AT\r\n"char count=0;GPIO_SetBits ( GPIOG, GPIO_Pin_13 );GPIO_SetBits ( GPIOG, GPIO_Pin_14 );printf("\r\nAT测试.....\r\n");delay_ms ( 2000 );while ( count < 10 ){printf("\r\nAT测试次数 %d......\r\n", count);if( esp8266_SendCmd ( "AT\r\n", "OK",NULL,500) ){printf("\r\nAT测试启动成功 %d......\r\n", count);return 1;}//复位以下GPIO_ResetBits ( GPIOG, GPIO_Pin_14 );delay_ms ( 500 ); GPIO_SetBits ( GPIOG, GPIO_Pin_14 );++ count;}return 0;
}主函数:#include "stm32f10x.h"   // 相当于51单片机中的  #include <reg51.h>
#include "my_usart1.h"
#include "my_key.h"
#include "delay.h"
#include "my_tim.h"
#include "my_dma.h"
#include "esp8266.h"
#include "string.h"#define WIFI_ID  "WLL001"
#define WIFI_PW  "123456789"
#define WIFI_PORT  8087#define LED1(x) x?(GPIOB->ODR &=~(0X01<<5)):(GPIOB->ODR |=(0X01<<5))
void Led_Config(void);
void delay_tim(u32 tim);
void led_Breath(void);int main(void)
{char buff[256]={0};// 来到这里的时候,系统的时钟已经被配置成72M。NVIC_SetPriorityGrouping(6);//0---7  占先优先级--7bit 次级优先级4--6bitsystick_Init();Led_Config();usart1_Config(115200);
//    key_Config();
//    key_Interrupt_Cfg();
//    tim3_Ch2_Config();
//    DMA1_Config();
//    printf("底层配置初始化完成\r\n");
//    LED1(1);esp8266_Init();ESP8266_IO_Config();//pG13  PG14printf("底层配置初始化完成\r\n");Esp8266_AT_test();//复位delay_ms(3000);/*AT
AT+CWMODE= 1  //客户端
AT+CWJAP="WLL001","123456789"    //
AT+CIPMUX=0  //0--单链接AT+CIPSTART1
="TCP","120.76.100.197",10002  //设置服务器IP端口
AT+CIPMODE=1  //透传模式AT+CIPSEND     
>            //收发数据*/printf("配置联网模式\r\n");
while(!esp8266_SendCmd("AT+CWMODE=1\r\n","OK",NULL,300))
{}printf("配置热点\r\n");
sprintf(buff,"AT+CWJAP=\"%s\",\"%s\"\r\n",WIFI_ID,WIFI_PW);
while(!esp8266_SendCmd(buff,"OK",NULL,1000))
{}printf("配置服务器端\r\n");memset(buff,0,sizeof(buff));sprintf(buff,"AT+CIPSTART=\"TCP\",\"192.168.137.1\",%d\r\n",WIFI_PORT);
while(!esp8266_SendCmd(buff,"OK",NULL,1000))
{}printf("配置透传\r\n");
while(!esp8266_SendCmd("AT+CIPMODE=1\r\n","OK",NULL,500))
{}printf("收发数据\r\n");while(!esp8266_SendCmd("AT+CIPSEND\r\n",">",NULL,10000))
{}while(1){
//    esp8266_SendCmd("AT\r\n","OK",NULL,300);esp8266_Analysis();Usart3_SendStr("hello world");
//        Get_Data();delay_ms(1000);LED1(1);delay_ms(1000);LED1(0);delay_ms(1000);}
}
void Led_Config(void)
{//时钟RCC->APB2ENR |=0X01<<3;//配置通用推挽输出GPIOB->CRL &=~(0X0F<<20);//清零GPIOB->CRL |=0x01<<20;//通用推挽输出--10MHZ
}void led_Breath(void)
{u32 i=0;for(i=0;i<1500;i++){LED1(1);delay_us(i);LED1(0);delay_us(1500-i);}for(i=0;i<1500;i++){LED1(1);delay_us(1500-i);LED1(0);delay_us(i);}
}void delay_tim(u32 tim)
{while(tim--);
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/7419.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

计算机的错误计算(二百二十二)

摘要 利用大模型化简计算 实验表明&#xff0c;虽然结果正确&#xff0c;但是&#xff0c;大模型既绕了弯路&#xff0c;又有数值计算错误。 与前面相同&#xff0c;再利用同一个算式看看另外一个大模型的化简与计算能力。 例1. 化简计算摘要中算式。 下面是与一个大模型的…

ansible自动化运维实战--软件包管理模块、服务模块、文件模块和收集模块setup(4)

文章目录 一、软件包管理模块1.1、功能1.2、常用参数1.3、示例 二、服务模块2.1、功能2.2、服务模块常用参数2.3、示例 三、文件与目录模块3.1、file功能3.2、常用参数3.3、示例 四、收集模块-setup4.1、setup功能4.2、示例 一、软件包管理模块 1.1、功能 Ansible 提供了多种…

高速光模块中的并行光学和WDM波分光学技术

随着AI大模型训练和推理对计算能力的需求呈指数级增长&#xff0c;AI数据中心的网络带宽需求大幅提升&#xff0c;推动了高速光模块的发展。光模块作为数据中心和高性能计算系统中的关键器件&#xff0c;主要用于提供高速和大容量的数据传输服务。 光模块提升带宽的方法有两种…

Linux命令行配置网络代理

在Linux命令行中&#xff0c;你可以使用以下方法设置网络代理服务器。 本文演示代理地址为&#xff1a;http://192.168.1.30:7890 请根据实际代理地址进行替换 临时代理 使用环境变量的方法&#xff1a; 打开终端&#xff0c;并输入以下命令&#xff1a; export http_proxyhtt…

SpringBoot3+Vue3开发学生选课管理系统

功能介绍 分三个角色登录&#xff1a;学生登录&#xff0c;老师登录&#xff0c;教务管理员登录&#xff0c;不同用户功能不同&#xff01; 1.学生用户功能 选课记录&#xff0c;查看选课记录&#xff0c;退选。选课管理&#xff0c;进行选课。通知管理&#xff0c;查看通知消…

牛客周赛 Round 78 A-C

A.时间表查询&#xff01; 链接&#xff1a;https://ac.nowcoder.com/acm/contest/100671/A 来源&#xff1a;牛客网 题目描述 今天是2025年1月25日&#xff0c;今年的六场牛客寒假算法基础集训营中&#xff0c;前两场比赛已经依次于 20250121、20250123 举行&#xff1b;而…

Android - 通过Logcat Manager简单获取Android手机的Log

由于工作需要&#xff0c;经常需要获取Android手机的Log。 平常都是通过adb命令来获取&#xff0c;每次都要写命令。 偶然的一个机会&#xff0c;我从外网发现了一个工具 Logcat Manager&#xff0c;只需要通过简单的双击即可获取Android的Log&#xff0c;这里也分享一下。 目…

苍穹外卖-day10

苍穹外卖-day10 Spring Task Spring Task 是Spring框架提供的任务调度工具&#xff0c;可以按照约定的时间自动执行某个代码逻辑。 cron表达式 cron表达式其实就是一个字符串&#xff0c;通过cron表达式可以定义任务触发的时间 **构成规则&#xff1a;**分为6或7个域&…

一文详解Filter类源码和应用

背景 在日常开发中&#xff0c;经常会有需要统一对请求做一些处理&#xff0c;常见的比如记录日志、权限安全控制、响应处理等。此时&#xff0c;ServletApi中的Filter类&#xff0c;就可以很方便的实现上述效果。 Filter类 是一个接口&#xff0c;属于 Java Servlet API 的一部…

(2)STM32 USB设备开发-USB虚拟串口

例程&#xff1a;STM32USBdevice: 基于STM32的USB设备例子程序 - Gitee.com 本篇为USB虚拟串口教程&#xff0c;没有知识&#xff0c;全是实操&#xff0c;按照步骤就能获得一个STM32的USB虚拟串口。本例子是在野火F103MINI开发板上验证的&#xff0c;如果代码中出现一些外设的…

K8S中的数据存储之基本存储

基本存储类型 EmptyDir 描述&#xff1a;当 Pod 被调度到节点上时&#xff0c;Kubernetes 会为 Pod 创建一个空目录&#xff0c;所有在该 Pod 中的容器都可以访问这个目录。特点&#xff1a; 生命周期与 Pod 绑定&#xff0c;Pod 删除时&#xff0c;数据也会丢失。适用于临时…

谈谈RTMP|RTSP播放器视频view垂直|水平反转和旋转设计

技术背景 我们在做RTMP|RTSP播放器的时候&#xff0c;有这样的技术诉求&#xff0c;有的摄像头出来的数据是有角度偏差的&#xff0c;比如“装倒了”&#xff0c;或者&#xff0c;图像存在上下或者左右反转&#xff0c;这时候&#xff0c;就需要播放器能做响应的处理&#xff…

自然语言处理——从原理、经典模型到应用

1. 概述 自然语言处理&#xff08;Natural Language Processing&#xff0c;NLP&#xff09;是一门借助计算机技术研究人类语言的科学&#xff0c;是人工智能领域的一个分支&#xff0c;旨在让计算机理解、生成和处理人类语言。其核心任务是将非结构化的自然语言转换为机器可以…

【MFC】C++所有控件随窗口大小全自动等比例缩放源码(控件内字体、列宽等未调整) 20250124

MFC界面全自动等比例缩放 1.在初始化里 枚举每个控件记录所有控件rect 2.在OnSize里&#xff0c;根据当前窗口和之前保存的窗口的宽高求比例x、y 3.枚举每个控件&#xff0c;根据比例x、y调整控件上下左右,并移动到新rect struct ControlInfo {CWnd* pControl;CRect original…

SkyWalking介绍

一款开源的系统性能监控工具(APM) 背景 在解决提报的IT性能问题时&#xff0c;由于缺乏系统性能监控运维的工具&#xff0c;导致问题排查非常困难&#xff0c;尤其是偶发的问题&#xff0c;无法进行问题复现还原&#xff0c;需要一套能实时监控线上系统性能的工具平台。 SkyWal…

Pyecharts之图表组合与布局优化

在数据可视化中&#xff0c;我们经常需要将多个图表组合在一起&#xff0c;以展示不同维度的数据或者进行对比分析。同时&#xff0c;合理的布局能够提升图表的可读性和用户体验。Pyecharts 提供了强大的组件和方法&#xff0c;让我们可以轻松实现图表的组合和布局优化。本篇将…

物业管理平台系统提升社区智能化服务效率与管理水平

内容概要 在现代社会中&#xff0c;物业管理平台系统的出现&#xff0c;为社区的智能化服务带来了革命性的变化。这种系统不仅仅是提升了工作效率&#xff0c;更是通过一系列智能化功能&#xff0c;根本性改变了物业管理的方式。比如&#xff0c;在广告位管理方面&#xff0c;…

Kafka 深入服务端 — 时间轮

Kafka中存在大量的延迟操作&#xff0c;比如延时生产、延时拉取和延时删除等。Kafka基于时间轮概念自定义实现了一个用于延时功能的定时器&#xff0c;来完成这些延迟操作。 1 时间轮 Kafka没有使用基于JDK自带的Timer或DelayQueue来实现延迟功能&#xff0c;因为它们的插入和…

Baklib如何推动企业知识管理的创新与转型探讨

内容概要 在当今快速发展的数字化时代&#xff0c;企业需要不断适应变化&#xff0c;以保持竞争优势。Baklib作为一款企业知识管理中台&#xff0c;扮演着推动数字化转型的重要角色。它通过提供一个集成的知识管理平台&#xff0c;帮助企业高效管理和共享内部及外部的知识资源…

日志收集Day005

1.filebeat的input类型之filestream实战案例: 在7.16版本中已经弃用log类型,之后需要使用filebeat,与log不同&#xff0c;filebeat的message无需设置就是顶级字段 1.1简单使用&#xff1a; filebeat.inputs: - type: filestreamenabled: truepaths:- /tmp/myfilestream01.lo…