Redis 数据库高可用

Redis 数据库的高可用

一.Redis 数据库的持久化

1.Redis 高可用概念

(1)在web服务器中,高可用是指服务器可以正常访问的时间,衡量的标准是在多长时间内可以提供正常服务(99.9%、99.99%、99.999%等等)。
(2)在Redis中,保证提供正常服务(如主从分离、快速容灾技术),还需要考虑数据容量的扩展、数据安全不会丢失等。

2.Redis 实现高可用的技术

实现高可用的技术主要包括持久化、主从复制、哨兵和 Cluster集群。

2.1 持久化

持久化是最简单的高可用方法.

主要作用是数据备份,即将数据存储在硬盘,保证数据不会因进程退出而丢失。

2.2 主从复制

(1)主从复制是高可用Redis的基础,哨兵和集群都是在主从复制基础上实现高可用的。

(2)主从复制主要实现了数据的多机备份,以及对于读操作的负载均衡和简单的故障恢复。

(3)缺陷:故障恢复无法自动化;写操作无法负载均衡;存储能力受到单机的限制。

2.3 哨兵

(1)在主从复制的基础上,哨兵实现了自动化的故障恢复。

(2)缺陷:写操作无法负载均衡;存储能力受到单机的限制。

2.4 Cluster集群

通过集群,Redis解决了写操作无法负载均衡,以及存储能力受到单机限制的问题,实现了较为完善的高可用方案。

3.Redis 持久化

3.1 持久化的功能

(1)Redis是内存数据库,数据存储在内存中,避免服务器断电等原因导致Redis进程异常退出后数据的永久丢失,需定期将Redis中的数据以某种形式(数据或命令)从内存保存到硬盘,当下次Redis重启时,利用持久化文件实现数据恢复。

(2)为了进行灾难备份,可以将持久化文件拷贝到一个远程位置。

3.2 Redis 提供持久化的方式

3.2.1 RDB 持久化

原理是将 Reids在内存中的数据库记录定时保存到磁盘上

3.2.2 AOF 持久化(append only file)

原理是将 Reids 的操作日志以追加的方式写入文件,类似于MySQL的binlog。

由AOF持久化的实时性更好,进程意外退出时丢失的数据更少,因此AOF是目前主流的持久化方式,不过RDB持久化仍然有其用武之地。

3.3 RDB 持久化

3.3.1 RDB 持久化概念

RDB持久化是指在指定的时间间隔内将内存中当前进程中的数据生成快照保存到硬盘(因此也称作快照持久化),用二进制压缩存储,保存的文件后缀是rdb;当Redis重新启动时,可以读取快照文件恢复数据。

3.3.2 RDB 持久化的触发条件

RDB持久化的触发分为手动触发和自动触发两种。

(1)手动触发

  • save命令和bgsave命令都可以生成RDB文件。
  • save命令会阻塞Redis服务器进程,直到RDB文件创建完毕为止,在Redis服务器阻塞期间,服务器不能处理任何命令请求。
  • bgsave命令会创建一个子进程,由子进程来负责创建RDB文件,父进程(即Redis主进程)则继续处理请求。

bgsave命令执行过程中,只有fork子进程时会阻塞服务器,而对于save命令,整个过程都会阻塞服务器,因此save已基本被废弃,线上环境要杜绝save的使用。

(2)自动触发

  • 在自动触发RDB持久化时,Redis也会选择bgsave而不是save来进行持久化。
  • save m n 自动触发最常见的情况是在配置文件中通过save m n,指定当m秒内发生n次变化时,会触发bgsave。
vim /etc/redis/6379.conf
--219行--以下三个save条件满足任意一个时,都会引起bgsave的调用
save 900 1 :当时间到900秒时,如果redis数据发生了至少1次变化,则执行bgsave
save 300 10 :当时间到300秒时,如果redis数据发生了至少10次变化,则执行bgsave
save 60 10000 :当时间到60秒时,如果redis数据发生了至少10000次变化,则执行bgsave
--254行--指定RDB文件名
dbfilename dump.rdb
--264行--指定RDB文件和AOF文件所在目录
dir /var/lib/redis/6379
--242行--是否开启RDB文件压缩
rdbcompression yes

(3)其他自动触发机制

除了save m n 以外,还有一些其他情况会触发bgsave:
● 在 主 从 复 制 场 景下,如果从节点执行全量复制操作,则主节点会执行bgsave命令,并将rdb文件发送给从节点。
●执行shutdown命令时,自动执行rdb持久化。

3.3.3 执行流程

(1)Redis父进程首先判断:当前是否在执行save,或bgsave/bgrewriteaof的子进程,如果在执行则bgsave命令直接返回。 bgsave/bgrewriteaof的子进程不能同时执行,主要是基于性能方面的考虑:两个并发的子进程同时执行大量的磁盘写操作,可能引起严重的性能问题。
(2)父进程执行fork操作创建子进程,这个过程中父进程是阻塞的,Redis不能执行来自客户端的任何命令
(3)父进程fork后,bgsave命令返回”Background saving started”信息并不再阻塞父进程,并可以响应其他命令
(4)子进程创建RDB文件,根据父进程内存快照生成临时快照文件,完成后对原有文件进行原子替换
(5)子进程发送信号给父进程表示完成,父进程更新统计信息
在这里插入图片描述

3.3.4 启动时加载

RDB文件的载入工作是在服务器启动时自动执行的,并没有专门的命令。但由于AOF的优先级更高,因此当AOF开启时,Redis会优先载入 AOF文件来恢复数据;只有当AOF关闭时,才会在Redis服务器启动时检测RDB文件,并自动载入。服务器载入RDB文件期间处于阻塞状态,直到载入完成为止。
Redis载入RDB文件时,会对RDB文件进行校验,如果文件损坏,则日志中会打印错误,Redis启动失败。

3.3.5 RDB的优缺点

(1)缺点

  • 数据完整性不如aof
  • rdb类似快照(完善)
  • 在进行备份时,会阻塞进程

(2)优点

  • 持久化速度块(因为保存的数据结果),在写入到*.rdb持久化文件进行压缩,来减小自身的体积
  • 集群中,redis主从复制,从——主服务器进行同步,默认先使用RDB文件进行,恢复操作,所有同步性能较高

3.4AOF 持久化

3.4.1AOF 持久化概念

RDB持久化是将进程数据写入文件,而AOF持久化,则是将Redis执行的每次写、删除命令记录到单独的日志文件中,查询操作不会记录; 当Redis重启时再次执行AOF文件中的命令来恢复数据。
与RDB相比,AOF的实时性更好,因此已成为主流的持久化方案。

3.4.2开启AOF

Redis服务器默认开启RDB,关闭AOF;要开启AOF,需要在配置文件中配置:
vim /etc/redis/6379.conf
--700行--修改,开启AOF
appendonly yes
--704行--指定AOF文件名称
appendfilename "appendonly.aof"
--796行--是否忽略最后一条可能存在问题的指令
aof-load-truncated yes
/etc/init.d/redis_6379 restart

3.4.3AOF的执行流程

由于需要记录Redis的每条写命令,因此AOF不需要触发.

AOF的执行流程包括:

(1)命令追加(append)

  • 将Redis的写命令追加到缓冲区aof_buf;
  • Redis先将写命令追加到缓冲区,而不是直接写入文件,主要是为了避免每次有写命令都直接写入硬盘,导致硬盘IO成为Redis负载的瓶颈。
  • 命令追加的格式是Redis命令请求的协议格式,它是一种纯文本格式,具有兼容性好、可读性强、容易处理、操作简单避免二次开销等优点。
  • 在AOF文件中,除了用于指定数据库的select命令(如select 0为选中0号数据库)是由Redis添加的,其他都是客户端发送来的写命令。

(2)文件写入(write)和文件同步(sync)

  • 根据不同的同步策略将aof_buf中的内容同步到硬盘;
  • Redis提供了多种AOF缓存区的同步文件策略,策略涉及到操作系统的write函数和fsync函数.
  • 为了提高文件写入效率,在现代操作系统中,当用户调用write函数将数据写入文件时,操作系统通常会将数据暂存到一个内存缓冲区里,当缓冲区被填满或超过了指定时限后,才真正将缓冲区的数据写入到硬盘里。
  • 这样虽然提高了效率,但也带来了安全问题:如果计算机停机,内存缓冲区中的数据会丢失;因此系统同时提供了fsync、fdatasync等同步函数,可以强制操作系统立刻将缓冲区中的数据写入到硬盘里,从而确保数据的安全性。
3.4.3.1 AOF缓存区的同步文件策略存在三种同步方式

vim /etc/redis/6379.conf
–729行–
●appendfsync always: 命令写入aof_buf后立即调用系统fsync操作同步到AOF文件,fsync完成后线程返回。这种情况下,每次有写命令都要同步到AOF文件,硬盘IO成为性能瓶颈,Redis只能支持大约几百TPS写入,严重降低了Redis的性能;即便是使用固态硬盘(SSD),每秒大约也只能处理几万个命令,而且会大大降低SSD的寿命。

●appendfsync no: 命令写入aof_buf后调用系统write操作,不对AOF文件做fsync同步;同步由操作系统负责,通常同步周期为30秒。这种情况下,文件同步的时间不可控,且缓冲区中堆积的数据会很多,数据安全性无法保证。

●appendfsync everysec: 命令写入aof_buf后调用系统write操作,write完成后线程返回;fsync同步文件操作由专门的线程每秒调用一次。everysec是前述两种策略的折中,是性能和数据安全性的平衡,因此是Redis的默认配置,也是我们推荐的配置。

(3)文件重写(rewrite)

  • 定期重写AOF文件,达到压缩的目的。
  • 随着时间流逝,Redis服务器执行的写命令越来越多,AOF文件也会越来越大;过大的AOF文件不仅会影响服务器的正常运行,也会导致数据恢复需要的时间过长。
  • 文件重写是指定期重写AOF文件,减小AOF文件的体积。需要注意的是,AOF重写是把Redis进程内的数据转化为写命令,同步到新的AOF文件;不会对旧的AOF文件进行任何读取、写入操作!
  • 对于AOF持久化来说,文件重写虽然是强烈推荐的,但并不是必须的;即使没有文件重写,数据也可以被持久化并在Redis启动的时候导入;因此在一些现实中,会关闭自动的文件重写,然后通过定时任务在每天的某一时刻定时执行。
3.4.3.2文件重写为何能够压缩AOF文件

●过期的数据不再写入文件
●无效的命令不再写入文件:如有些数据被重复设值(set mykey v1, set mykey v2)、有些数据被删除了(set myset v1, del myset)等。
●多条命令可以合并为一个:如sadd myset v1, sadd myset v2, sadd myset v3可以合并为sadd myset v1 v2 v3。

通过上述内容可以看出,由于重写后AOF执行的命令减少了,文件重写既可以减少文件占用的空间,也可以加快恢复速度。

3.4.3.3文件重写的触发,分为手动触发和自动触发:

●手动触发:直接调用bgrewriteaof命令,该命令的执行与bgsave有些类似:都是fork子进程进行具体的工作,且都只有在fork时阻塞。
●自动触发:通过设置auto-aof-rewrite-min-size选项和auto-aof-rewrite-percentage选项来自动执行BGREWRITEAOF。 只有当auto-aof-rewrite-min-size和auto-aof-rewrite-percentage两个选项同时满足时,才会自动触发AOF重写,即bgrewriteaof操作。

vim /etc/redis/6379.conf
–729–
●auto-aof-rewrite-percentage 100 :当前AOF文件大小(即aof_current_size)是上次日志重写时AOF文件大小(aof_base_size)两倍时,发生BGREWRITEAOF操作
●auto-aof-rewrite-min-size 64mb :当前AOF文件执行BGREWRITEAOF命令的最小值,避免刚开始启动Reids时由于文件尺寸较小导致频繁的BGREWRITEAOF

关于文件重写的流程,有两点需要特别注意:(1)重写由父进程fork子进程进行;(2)重写期间Redis执行的写命令,需要追加到新的AOF文件中,为此Redis引入了aof_rewrite_buf缓存。

3.4.4文件重写的流程如下:

(1)Redis父进程首先判断当前是否存在正在执行bgsave/bgrewriteaof的子进程,如果存在则bgrewriteaof命令直接返回,如果存在 bgsave命令则等bgsave执行完成后再执行。
(2)父进程执行fork操作创建子进程,这个过程中父进程是阻塞的。
(3.1)父进程fork后,bgrewriteaof命令返回”Background append only file rewrite started”信息并不再阻塞父进程, 并可以响应其他命令。Redis的所有写命令依然写入AOF缓冲区,并根据appendfsync策略同步到硬盘,保证原有AOF机制的正确。
(3.2)由于fork操作使用写时复制技术,子进程只能共享fork操作时的内存数据。由于父进程依然在响应命令,因此Redis使用AOF重写缓冲区(aof_rewrite_buf)保存这部分数据,防止新AOF文件生成期间丢失这部分数据。也就是说,bgrewriteaof执行期间,Redis的写命令同时追加到aof_buf和aof_rewirte_buf两个缓冲区。
(4)子进程根据内存快照,按照命令合并规则写入到新的AOF文件。
(5.1)子进程写完新的AOF文件后,向父进程发信号,父进程更新统计信息,具体可以通过info persistence查看。
(5.2)父进程把AOF重写缓冲区的数据写入到新的AOF文件,这样就保证了新AOF文件所保存的数据库状态和服务器当前状态一致。
(5.3)使用新的AOF文件替换老文件,完成AOF重写。
在这里插入图片描述

3.4.5启动时加载

(1)当AOF开启时,Redis启动时会优先载入AOF文件来恢复数据;只有当AOF关闭时,才会载入RDB文件恢复数据。
(2)当AOF开启,但AOF文件不存在时,即使RDB文件存在也不会加载。
(3)Redis载入AOF文件时,会对AOF文件进行校验,如果文件损坏,则日志中会打印错误,Redis启动失败。但如果是AOF文件结尾不完整(机器突然宕机等容易导致文件尾部不完整),且aof-load-truncated参数开启,则日志中会输出警告,Redis忽略掉AOF文件的尾部,启动成功。aof-load-truncated参数默认是开启的。

3.4.6AOF持久化的优缺点

(1)缺点

  • 执行语句一直的情况下,AOF备份的内容更大,RDB备份的内容较小、备份的时结果、语句
  • AOF消耗的性能更大,占用磁盘越来越大(相当于mysql的增备)

(2)优点

  • AOF的数据完整性比RDB高
  • 重写功能会对无效的语句进行删除(目的是为了节省AOF文件占用磁盘空间

二.Redis 性能管理

1.查看Redis内存使用

127.0.0.1:6379> info memory

2.内存碎片率

2.1 什么是内存碎片率

相当于如有32个内存,使用了24个,则剩下的8个就是内存碎片率

2.2 跟踪内存碎片率对理解Redis实例的资源性能

(1)内存碎片率稍大于1是合理的,这个值表示内存碎片率比较低,也说明 Redis 没有发生内存交换。
(2)内存碎片率超过1.5,说明Redis消耗了实际需要物理内存的150%,其中50%是内存碎片率。需要在redis-cli工具上输入shutdown save 命令,让 Redis 数据库执行保存操作并关闭 Redis 服务,再重启服务器。
(3)内存碎片率低于1的,说明Redis内存分配超出了物理内存,操作系统正在进行内存交换。需要增加可用物理内存或减少 Redis 内存占用。

2.3 为什么会有内存碎片

(1)redis存储数据的时候,操作系统申请的内存空间可能会大于实际需要的内存空间

(2)频繁修改redis中数据也会产生内存碎片

3.内存使用率

redis实例的内存使用率超过可用最大内存,操作系统将开始进行内存与swap空间交换。

3.1 避免内存交换发生的方法:

(1)针对缓存数据大小选择安装 Redis 实例
(2)尽可能的使用Hash数据结构存储
(3)设置key的过期时间

4.内回收key

内存清理策略,保证合理分配redis有限的内存资源。

当达到设置的最大阀值时,需选择一种key的回收策略,默认情况下回收策略是禁止删除。

配置文件中修改 maxmemory-policy 属性值:
vim /etc/redis/6379.conf
--598--
maxmemory-policy noenviction

●volatile-lru:使用LRU算法从已设置过期时间的数据集合中淘汰数据(移除最近最少使用的key,针对设置了TTL的key)
●volatile-ttl:从已设置过期时间的数据集合中挑选即将过期的数据淘汰(移除最近过期的key)
●volatile-random:从已设置过期时间的数据集合中随机挑选数据淘汰(在设置了TTL的key里随机移除)
●allkeys-lru:使用LRU算法从所有数据集合中淘汰数据(移除最少使用的key,针对所有的key)
●allkeys-random:从数据集合中任意选择数据淘汰(随机移除key)
●noenviction:禁止淘汰数据(不删除直到写满时报错)

1.RDB和AOF基本理解

(1)RDB:周期性的把内存中的数据保存在磁盘中

(2)AOF: 从Redis的操作日志记录中将执行的过程同步到磁盘中

2.RDB和AOF的持久化过程

(1)RDB

写入磁盘中保存的方式: 内存中
写入磁盘中的保存的数据对象:结果数据

内存写入磁盘后,会进行压缩,来减小*rdb的磁盘占用空间量

(2)AOF

内存写入到append追加到缓冲区再调用CPU资源来写入到磁盘中

操作日志记录中的执行语句追加到缓冲调用CPU写入磁盘

内存—缓冲—磁盘,写入后,会周期性的进行重写,调过一些"无效操作”保存

3.RDB和AOF触发方式

(1)RDB分为

  • 手动触发
  • 自动触发:save m n(假设save 900 60,则表示900秒内有60条语句执行,则触发RDB持久化)

特殊触发:当手动关闭Redis时,会进行RDB方式的持久化

/etc/init.d/redis 6379 stop  restart
shutdown 关闭时,kill 不会触发

(2)AOF

  • 手动触发
  • 自动触发
    always每条语句,同步执行持久化(有强一致性要的场景)
    no 从不进行持久化
    every second 每秒进行一次AOE持久化(建议使用的,均衡型场景)

4.RDB和AOE优先级

(1)因为redis默认是将数据保存在内存中,所以若redis启动、关闭时内存中的数据会丢失

(2)在redis每次启动时,都会读取持久化文件,来会发数据到内存中,以保证reids数据的完整性
(3)RDB和AOF优先级aof>RDB
式的持久化

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/74373.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2023年第四届“华数杯”数学建模思路 - 案例:随机森林

## 0 赛题思路 (赛题出来以后第一时间在CSDN分享) https://blog.csdn.net/dc_sinor?typeblog 1 什么是随机森林? 随机森林属于 集成学习 中的 Bagging(Bootstrap AGgregation 的简称) 方法。如果用图来表示他们之…

【微信支付V3】

微信支付V3 微信支付V3 开发文档&#xff1a; https://pay.weixin.qq.com/wiki/doc/apiv3/wxpay/pages/index.shtml 1. 查看文档 使用微信提供的SDK&#xff0c;在文档中进入SDK 2. 开发 1. 添加jar包 <dependency><groupId>com.github.wechatpay-apiv3<…

使用adb通过电脑给安卓设备安装apk文件

最近碰到要在开发板上安装软件的问题&#xff0c;由于是开发板上的安卓系统没有解析apk文件的工具&#xff0c;所以无法通过直接打开apk文件来安装软件。因此查询各种资料后发现可以使用adb工具&#xff0c;这样一来可以在电脑上给安卓设备安装软件。 ADB 就是连接 Android 手…

Java进阶——数据结构与算法之哈希表与树的入门小结(四)

文章大纲 引言一、哈希表1、哈希表概述2、哈希表的基本设计思想3、JDK中的哈希表的设计思想概述 二、树1、树的概述2、树的特点3、树的相关术语4、树的存储结构4.1、双亲表示法4.2、孩子兄弟表示法&#xff1a;4.3、孩子表示法&#xff1a;4.4、双亲孩子表示法 三、二叉树1、二…

SAM在医学图像分割的一些研究(Segment Anything Model for Medical Images?(2023))

使用预训练模型通过两种主要模式进行分割&#xff0c;包括自动一切和手动提示(例如&#xff0c;点和框)。SAM在各种自然图像分割任务上取得了令人印象深刻的效果。然而&#xff0c;由于医学图像的形态复杂、解剖结构精细、物体边界不确定和复杂、物体尺度大&#xff0c;使得医学…

【第一阶段】kotlin的when表达式

1.Java 的if /when是语句 kotlin的if/when是表达式&#xff0c;表达式是有返回值的 java中void是个关键字&#xff0c;Unit在kotlin中是个类 2.当使用when语句的时候必须有一个不满足的值即else: fun main() {var week:Int5val info when(week){1->"今天是星期一"…

【iOS】—— UIKit相关问题

文章目录 UIKit常用的UIKit组件懒加载的优势 CALayer和UIView区别关系 UITableViewUITableView遵循的两个delegate以及必须实现的方法上述四个必须实现方法执行顺序其他方法的执行顺序&#xff1a; UICollectionView和UITableView的区别UICollectionViewFlowLayout和UICollecti…

em3288 linux_4.19 第一次烧写无法进入内核的情况

1. 情况一&#xff1a; /DDR Version 1.11 20210818 In SRX Channel a: DDR3 400MHz Bus Width32 Col10 Bank8 Row15 CS1 Die Bus-Width16 Size1024MB Channel b: DDR3 400MHz Bus Width32 Col10 Bank8 Row15 CS1 Die Bus-Width16 Size1024MB OUT Boot1 Release Time: Jul 22 2…

Jenkins插件管理切换国内源地址

一、替换国内插件下载地址 选择系统管理–>插件管理–> Available Plugins 并等待页面完全加载完成、这样做是为了把jenkins官方的插件列表下载到本地、接着修改地址文件、替换为国内插件地址 进入插件文件目录 cd /var/lib/jenkins/updatesdefault.json 为插件源地址…

STM32 LWIP UDP 一对一 一对多发送

STM32 LWIP UDP通信 前言设置 IP 地址UDP函数配置实验结果单播发送&#xff0c;一对一发送广播发送&#xff0c;一对多发送 可能遇到的问题总结 前言 之前没有接触过网络的通信&#xff0c;工作需要 UDP 接收和发送通信&#xff0c;在网上没有找到一对一、一对多的相关例程&am…

正则表达式在格式校验中的应用以及包装类的重要性

文章目录 正则表达式&#xff1a;做格式校验包装类&#xff1a;在基本数据类型与引用数据类型间的桥梁总结 在现代IT技术岗位的面试中&#xff0c;掌握正则表达式的应用以及理解包装类的重要性是非常有益的。这篇博客将围绕这两个主题展开&#xff0c;帮助读者更好地面对面试挑…

IIC子系统-实现si7006温湿度传感器采集温湿度功能

1.将IIC核心层和总线驱动层配置进内核 *********************配置核心层*************************1.找到核心层代码目录&#xff1a;内核顶层目录/drivers/i2c2. 内核顶层目录执行make menuconfig3. > Device Drivers > I2C support ->-*-I2C support4.保存退出***…

数据预处理matlab

matlab数据的获取、预处理、统计、可视化、降维 数据的预处理 - MATLAB & Simulink - MathWorks 中国https://ww2.mathworks.cn/help/matlab/preprocessing-data.html 一、数据的获取 1.1 从Excel中获取 使用readtable() 例1&#xff1a; 使用spreadsheetImportOption…

端口映射教程vs快解析内网穿透

随着社会信息化的发展&#xff0c;很多人都开始关注网络问题&#xff0c;掌握一些基础的网络知识是非常有必要的。其中&#xff0c;端口映射作为一项重要的技术&#xff0c;在网络通信中起到了至关重要的作用。 端口映射在现实生活中有着广泛的应用。如果你是一位游戏爱好者&a…

极狐GitLab 全新「价值流仪表盘」使用指南

本文来源&#xff1a;about.gitlab.com 作者&#xff1a;Haim Snir 译者&#xff1a;极狐(GitLab) 市场部内容团队 GitLab / 极狐GitLab 价值流仪表盘的使用相对简单&#xff0c;这种可以定制化的仪表盘能够让决策者识别数字化转型进程中的趋势及机遇。 如果你已经在用 GitLab…

NGZORRO:动态表单/模型驱动 的相关问题

官网的demo的[nzFor]"control.controlInstance"&#xff0c;似乎是靠[formControlName]"control.controlInstance"来关联的。 <form nz-form [formGroup]"validateForm" (ngSubmit)"submitForm()"><nz-form-item *ngFor&quo…

day50-Insect Catch Game(捉虫游戏)

50 天学习 50 个项目 - HTMLCSS and JavaScript day50-Insect Catch Game&#xff08;捉虫游戏&#xff09; 效果 index.html <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8" /><meta name"viewport"…

【MySQL】数据库基本使用

文章目录 一、数据库介绍二、数据库使用2.1 登录MySQL2.2 基本使用2.2.1 显示当前 MySQL 实例中所有的数据库列表2.2.2 创建数据库2.2.3 创建数据库表2.2.4 在表中插入数据2.2.5 在表中查询数据 三、服务器、数据库、表之间的关系四、SQL语句分类五、存储引擎 一、数据库介绍 …

图卷积网络(GCN)和池化

一、说明 GCN&#xff08;Graph Convolutional Network&#xff09;是一种用于图形数据处理和机器学习的神经网络架构。GCN 可以在图形中捕获节点之间的关系&#xff0c;从而能够更好地处理图形数据。GCN 可以沿着图形上的边缘执行滤波器操作&#xff0c;将每个节点的特征向量进…

中国艺术孙溟㠭篆刻作品《活着》

人人为生活挣扎着&#xff0c;做着不想做的事&#xff0c;说着不想说的话&#xff0c;为生活低头弯腰委屈求全人生苦多甜少&#xff0c;何时了&#xff01;何时了&#xff01;甜来人生到头了…… 孙溟㠭篆刻作品《活着》 孙溟㠭篆刻作品《活着》 孙溟㠭篆刻作品《活着》 文/九钵